122EDT02	CONCEPTS OF ENGINEERING DESIGN	-	•	•	•
OBJECTIVE		3	0	0	3
	roduce basic concepts in design process.				
	ovide knowledge on tools in engineering design.				
1	rn material selection and materials in designing to machine me	mhe	rs		
	part basic knowledge in material processing for designing mach			hers	
	entify legal, ethical environmental and safety issue in design and				eering
	DESIGN PROCESS	ı qu	anty I	08	
	process - Need identification – Design requirements – Product Life	e Cv	vcle – 1		-
	s of Product Design – Conceptual Design, Embodiment Desig				
	gineering – CAD & CAM, Human factors in Design.				C
UNIT II TO	OLS IN ENGINEERING DESIGN			09)
	Problem solving, Decision Theory, Modeling - Role of m				
	matical Modeling, Geometric modeling, Finite Element Modeling				
	Finite Difference method, Monte Carlo method – Optimizatio	on –	Searc	h M	ethods,
	gramming, Structural and Shape optimization.				
	ATERIAL SELECTION AND MATERIALS IN DESIGN		1	. 09	
	and Properties of Engineering materials, Material Standards aterial selection – Ashby Chart and method of weight factors, I		-		
	f material selection Chart, Pugh selection method, Selection				
	esign for brittle fracture, Design for fatigue failure, Design for				
Designing with		co	103101	1 1031	stance,
	TERIAL PROCESSING AND DESIGN			09)
	of manufacturing processes and their role in design, Factors de	tern	nining	the j	process
	of process selection chart and computerized database - Desig				
Design for for	ging and sheet metal forming, Design for casting, Design for ma	achi	ning, [•]	weld	ing and
	ign for residual stresses and heat treatment				
	GAL, ETHICAL ENVIRONMENTAL AND SAFETY ISS	SUE	S IN		ESIGN
•	TY ENGINEERING		C 1	1(
	, Contracts, Liability, Tort Law, Product Liability, Design aspec				
	s, Solving ethical conflicts, Design for environment – Life Cycle				
	remanufacture, Design for safety – Potential Dangers and Gui- for reliability failure mode effect analysis, Robust Design.	aen	nes to	r des	ign for
safety, Design		то	тат	45 1	Tours
		10	IAL	451	Hours
COURSE OU					
Student will be					
	m design process for developing new machine members.				
	tools in engineering design				
	ne solution in materials selection and materials in designing a n	ew	machi	ne m	ember.
Condu	ct designing machine members using materials processing.				
	knowledge to select material basing on legal, ethical environme	enta	l and s	afety	issues
in desi	gn and quality engineering.				

- 1. Dieter George E, "Engineering Design A Materials and Processing Approach", McGraw Hill, International Edition, Singapore 2012.
- 2. Karl T. Ulrich and Steven D. Eppinger, "Product Design and Development", McGraw Hill, International Edition, 6th Edition, 2016.

- 1. Gerhard Pahl and Beitz W, "Engineering Design: A Systematic Approach", Springer, Verlag, London, 3rd Edition, 2014.
- 2. Suh. N. P., "The Principles of Design", Oxford University Press, New York, 1990.
- 3. Ray M.S., "Elements of Engineering Design: An Integrated Approach", Prentice Hall Inc. 1985.

122EDT03	COMPUTER APPLICATIONS IN DESIGN	L	T	P	<u>C</u>
OBJECTIVE		3	0	0	3
	derstand fundamental concepts of computer graphics and its	to	ole in	а <u>се</u>	nori
framev		5 100	JIS III	a ge	neri
	part the parametric fundamentals to create and manipulate geo	meti	ric mo	delc	nein
	, surfaces and solids.	meu		ueis	usin
	part the parametric fundamentals to create and manipulate geo	meti	ric mo	delc	ncin
	S and solids.	men		ueis	usin
	vide clear understanding of CAD systems for 3D modeling and	viev	wing		
-	ate strong skills of assembly modeling and prepare the student to		-	octive	• 116A
	and and and system.	500			/ usc
	ITE: Fundamentals of Computer and Programming, Design of	f Ma	chine	Elen	ients
	ismission Systems.				
	ODUCTION TO COMPUTER GRAPHICS FUNDAMENT	AL	S	9	
Overview of	Graphics systems: Video Display Devices, Raster-Scan Sy	stem	, Ran	dom	-Sca
	phics Monitors and Workstations, Input Devices, Hard-Copy				
Software.			,		L
Output primiti	ves: Line Drawing Algorithm - DDA, Bresenham's and Para	llel	Line A	Algor	ithn
Circle generati	ng algorithm – Midpoint Circle Algorithm.			-	
Geometric Tra	nsformations: Coordinate Transformations, Windowing and Clip	ppin	g, 2D (Geon	netri
transformation		lecti	on, (Comp	osit
	, 3D transformations.				
	RVES AND SURFACES MODELLING			9	
	curves - Analytical curves: line, circle and conics - synthetic curves	urve	s: Her	mite	cubi
	curve and B-Spline curve – curve manipulations.		2		
	surfaces - Analytical surfaces: Plane surface, ruled surface, surf				
-	nder – synthetic surfaces: Hermitebicubic surface- Bezier su	irfac	e and	B-2	plin
	e manipulations. RBS AND SOLID MODELING			9	
		o o 1 o	on act	-	tion
	es- curves, lines, arcs, circle and bi linear surface. Regularized Be stancing - sweep representations - boundary representations				
.	nparison of representations - user interface for solid modeling.	- 0	JIISUUC	live	5011
	UAL REALISM			9	
	emoval, Hidden Surface removal, – Hidden Solid Removal alg	orit	hme -		ing.
Coloring.	emoval, maden burrace removal, - maden bond Kemoval alg	Joint	11115 -	Shau	mg
U	onventional, Computer animation, Engineering animation - type	s an	d tech	niaue	es.
	EMBLY OF PARTS AND PRODUCT LIFE CYCLE MANA			-	
	leling – Design for manufacture – Design for assembly – com				MA
	positions and orientation - tolerances analysis –Center of Gravit				
	mechanism simulation. Graphics and computing standards				
standards. Proc	duct development and management - new product development	– n	nodels	utiliz	ed i
various phases	of new product development – managing product life cycle.				
	ſ	ТОТ	'AL:4	45 Ho	ours
COURSE OU	TCOMES:				
Students will	be able to				
• Solve	2D and 3D transformations for the basic entities like line and cir	rcle.			
	late the basic mathematics fundamental to CAD system.				
	e different geometric modeling techniques like feature base	d m	odelin	σειι	rfac
	ing and solid modeling.	u 111	Jucini	5, su	1140
		1	1.1		

- Create geometric models through animation and transform them into real world systems
- Simulate assembly of parts using Computer-Aided Design software.

- 1. Ibrahim Zeid, "Mastering CAD/CAM", McGraw Hill, 2nd Edition, 2006.
- 2. William M Newman and Robert F.Sproull "Principles of Interactive Computer Graphics", McGraw Hill Book Co. 1st Edition, 2001.

- 1. Boothroyd, G, "Assembly Automation and Product Design", Marcel Dekker, New York, 1997.
- 2. Chitale A.K and Gupta R.C, "Product design and manufacturing", PHI learning private limited, 6th Edition, 2015.
- 3. David Rogers, James Alan Adams, "Mathematical Elements for Computer Graphics" 2nd Edition, Tata McGraw-Hill edition, 2003.
- 4. Donald D Hearn and M. Pauline Baker "Computer Graphics C Version", Prentice Hall, Inc., 2nd Edition, 1996.

122EDT04	ADVANCED FINITE ELEMENT ANALYSIS	L	Т	P	С
		3	1	0	4
OBJECTIVE					
	ulate and analysis of 1D analysis arising in engineering de	0			
2. To form	ulate and analysis of 2D, 3D analysis arising in engineerin	g de	esign.		
3. To know	v about the isoparametric formulation of triangular and rec	tang	gular e	elem	ents.
4. To prov	ide further advanced FEA knowledge and techniques for	sol	lving	Dyn	amic
analysis			_	-	
5. To analy	yze the thermal and fluid flow problems by FEA.				
	ITE - Knowledge of Numerical Methods and Strength of Mater	ials	are rec	uire	d.
	DIMENSIONAL ANALYSIS			12	
	nite element analysis in design, Modeling and discretization, Int	erpo	lation.	elen	nents.
	grees of Freedom, Applications of FEA, Variational methods				nergy
	ighted residual methods, Galerkin method, One Dimens				\mathcal{O}
	Procedures: Bar element, Beam element, Truss element, Shape				
-	vectors - Assembly of elements – Boundary conditions - So				
	ads and stresses, Example problems.			•	
	O AND THREE DIMENSIONAL ANALYSIS			12	
Basic Boundar	ry Value Problems in two-dimensions – Triangular, quadril	atera	al, hig	gher	order
elements, Por	isson's and Laplace's Equation, Weak Formulation, Introdu	ictio	n to [Theo	ry of
Elasticity – Pla	ne Stress – Plane Strain and Axisymmetric Formulation, Princi	ple o	of virtu	ial w	ork –
Element matri	ces and vectors, Three dimensional stress and strain - Tet	rahe	dral H	Elem	ent –
Hexahedral Ele	ement, Finite Element formulation, Example problems.				
UNIT III ISO	OPARAMETRIC FORMULATION			12	
Natural Co-o	rdinate Systems - Lagrangian Interpolation Polynomial	s –	Isop	aran	netric
Elements, Bi	linear Isoparametric quadrilateral elements - shape functio	n, Ja	acobia	n m	atrix,
	ement matrix, stress-strain relationship matrix, force ver				
	triangular element - rectangular elements - Serendipity el	leme	ents, N	Jume	erical
	Gauss quadrature – Stress calculations, Examples problems.				
	NAMIC ANALYSIS			12	
	Equations of motion, Axial vibration of rod, Transverse V				
	of element stiffness, Mass and force matrices, Lumped as				
	Iral frequencies, Eigen Values and Eigen Vectors, Mode shap	bes,	Vector	r iter	ation
,	sient vibration, Example problems.				
	RMAL AND FLUID FLOW ANALYSIS			12	
•	neat transfer, Heat transfer with convection, One Dimension				
	Wo Dimensional Finite Element Formulation, Basic differenti				
	ensional Finite Element Formulation, Two Dimensional Finite E	lem	ent Fo	rmul	ation,
Example probl					
	<u></u>	TOT	AL : 6	50 H	ours

- Students will capable of formulate and analysis of 1D Problems.
- Students will capable of formulate and analysis of 2D and 3D Problems.
- Students will have the ability to solve isoparametric problems using FEA.
- Students will able to solve dynamic analysis problem using FEA
- Students will have the ability to apply finite element to formulate and solve thermal and fluid flow problems.

TEXT BOOKS:

1. Daryl L Logan, "A First course in the finite element method", Cengage learning, 6th Edition, 2017.

2. Seshu P, "A Text book on Finite Element Analysis", Prentice Hall of India, New Jersey, 2003. **REFERENCE BOOKS:**

- 1. S.S.Rao, "The Finite Element Method in Engineering", Butterworth-Heinemann, 5th Edition, 2010.
- 2. Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, "Concepts and Applications of Finite Element Analysis", Wiley Student Edition, 4th Edition, 2008.
- 3. J. N.Reddy, "An Introduction to the Finite Element Method", McGraw Hill International, 2005.
- 4. David V Hutton, "Fundamentals of Finite Element Analysis", McGraw Hill Int. Ed., New Delhi, 2004.
- 5. Chandrupatla T R and Belegundu A D, "Introduction to Finite Elements in Engineering", Third Edition, Prentice Hall, 2002.
- 6. Bathe K.J., "Finite Element Procedures in Engineering Analysis", Prentice Hall, 1996.

122EDT05 OPTIMIZATION TECHNIQUES IN DESIGN OBJECTIVES: 1. To understand the basic concepts of unconstrained optimization technic	3			С
		1	0	4
1. To understand the basic concepts of unconstrained optimization technic				
1. To uncertaine the cubic concepts of unconstrained optimization technic	jues			
2. To understand the basic concepts of constrained optimization technique	es.			
3. To provide the mathematical foundation of artificial neural networks an	nd s	warm	intel	ligence
for design problems.				-
4. To implement optimization approaches and to select appropriates application.	so	lution	for	design
	a of	otio or	ad d	momio
5. To demonstrate selected optimization algorithms commonly used in applications.	i su	alic a	ia a	ynamic
PREREQUISITE: Knowledge of Design of Machine Elements is required.				
UNIT I UNCONSTRAINED OPTIMIZATION TECHNIQUES			12	,
Introduction to optimum design - General principles of optimization – Proble	m fa	rmuls		_
classifications-Single variable and multi variable optimization, Technique				
minimization – Golden section, Random, pattern and gradient search me				
methods.	liiot	#5 I	morp	olution
UNIT II CONSTRAINED OPTIMIZATION TECHNIQUES			12	2
Optimization with equality and inequality constraints-Direct methods-In-	dire	ct me		
penalty functions, Lagrange multipliers-Geometric programming.				U
UNIT III ARTIFICIAL NEURAL NETWORKS AND SWARM INTEL	LIG	ENC	E 12	2
Introduction-Activation functions, types of activation functions, neural n	netw	ork a	rchite	ectures,
Single layer feed forward network, multi layer feed forward network, Neural	net	work a	ppli	cations.
Swarm intelligence-Various animal behaviors, Ant Colony optimization	ion,	Parti	cle	Swarm
optimization.				
UNIT IV ADVANCED OPTIMIZATION TECHNIQUES			12	
Multistage optimization-dynamic programming, stochastic programming	ning	g Mu	ıltioł	ojective
optimization Genetic algorithms and Simulated Annealing technique.				
UNIT V STATIC AND DYNAMIC APPLICATIONS			12	_
Structural applications – Design of simple truss members – Design of simple a				
members for minimum cost, weight - Design of shafts and torsionally loaded				
springs. Dynamic Applications - Optimum design of single, two degree				
vibration absorbers. Application in Mechanisms-Optimum design of simple				
	TO	TAL	: 60]	Hours

The students will be able to

- Formulate unconstrained optimization techniques in engineering design application.
- Formulate constrained optimization techniques for various applications.
- Implement neural network technique to real world design problems.
- Apply genetic algorithms to combinatorial optimization problems.
- Evaluate solutions by various optimization approaches for a design problem.

TEXT BOOKS:

- 1. Rao Singiresu S., "Engineering Optimization Theory and Practice", New Age International Limited, New Delhi, 3rd Edition, 2013.
- 2. Kalyanmoy Deb, "Optimization for Engineering Design: Algorithms and Examples", PHI Learning Private Limited, 2nd Edition, 2012.

- 1. Jang, J.S.R, Sun, C.T and Mizutani E., "Neuro-Fuzzy and Soft Computing", Pearson Education, 2015.
- 2. Rajasekaran S and Vijayalakshmi Pai G.A, "Neural Networks, Fuzzy Logic and Genetic Algorithms", PHI, 2011.
- 3. Goldberg, David.E, "Genetic Algorithms in Search, Optimization and Machine Learning", Pearson, 2009.
- 4. Johnson Ray, C., "Optimum Design of Mechanical Elements", Wiley, 2nd Edition, 1980.

1 22EDT06	RESEARCH METHODOLOGY AND IPR	L 3	Т 0	P 0	C 3
OBJECTIVES	:		Ū	Ū	
1. To know	how to identify and to solve the research problem.				
2. To devel	op the skills of research related activities.				
3. To learn	about the procedure for applying patents.				
	se the structure of patents.				
5. To know	about the advances and practical applications of pater	nts 1	oy tal	king	case
studies.			•	-	
UNIT I INTR	ODUCTION TO RESEARCH METHODOLOGY			9	
Meaning of re	search problem, Sources of research problem, Criteria C	'har	acteri	stics	of a
good research	problem, Errors in selecting a research problem, Scope	and	1 obje	ectiv	es of
research prob	em. Approaches of investigation of solutions for resea	rch	probl	lem,	data
collection, ana	lysis, interpretation, Necessary instrumentations.				
UNIT II RES	SEARCH SKILLS			9	
Effective litera	ture studies approach, analysis Plagiarism, Research ethics,	Eff	ective	tech	nnical
	write report, Paper, Developing a Research Proposal, Format of	rese	earch p	propo	osal, a
	assessment by a review committee.				
	FURE OF INTELLECTUAL PROPERTY RIGHTS		_	9	
	gns, Trade and Copyright. Process of Patenting a			-	
-	research, innovation, patenting, development. Interr				
	ooperation on Intellectual Property. Procedure for grants of	f pat	ents,	Pate	nting
under PCT.					
	TENT RIGHTS			9	
-	ent Rights. Licensing and transfer of technology. Paten	t in	torma	ation	and
	ographical Indications.			0	
	DEVELOPMENTS IN IPR			9	
	n of Patent System. New developments in IPR; IPR of B		gical	Syst	tems,
Computer Soft	ware etc. Traditional knowledge Case Studies, IPR and II				
		01	AL : 4	15 H	ours
COURSE OUT The student w					
	e research problem formulation.				
 Equip res 	earch related skills like writing a research paper, report prep	oara	tion a	nd fo	ormat
of researc	ch proposal.				
 Analyse I Know ab 	he process of patenting and its procedure. out the scope of patent rights and applications of technolog	ny fr	ancfe	r	
Gather in	formation about recent developments about IPR.	sy u	ansie	1.	
TEXT BOOKS	•				
	umar, "Research Methodology: A Step by Step Guide for	beg	ginners	s", S	AGE
•	n, 3 rd Edition, 2011.				
2. T. Ramap	pa, "Intellectual Property Rights Under WTO", S. Chand, 2008				
	Cothari, "Research Methodology: Methods and Technik	ique	s", N	Jew	Age
Internatio	onal, 2 nd Edition, 2004.				
REFERENCE		_			
	. Merges, Peter S. Menell, Mark A. Lemley, "Intellectua	l Pr	operty	in in	New
	gical Age", Aspen Law & Business, 3 rd Edition, 2016.	20	77		
	Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd				Pag 0-
	lville and Wayne Goddard, "Research methodology: an introduce students", Juta Academic, 1996.	uctit	m ior	scier	ice &
	In Students', Jula Academic, 1996. Ienry Mayall, "Industrial Design for Engineers", McGraw Hill,	100	2		
	W Niebel, "Product Design and Process Engineering", McGraw			st Fd	lition
1974.	in Theori, Troduct Design and Trocess Englisering, MeOr	uvv .		ĽU	nuon,
17/7.					

6. Asimov, "Introduction to Design", Prentice Hall, 1962.

122EDP08	CAD LABORATORY	L 0	T 0	P 2	<u>С</u> 1
OBJECTIVES	•	U	0	4	
	about design concepts, to use the Finite Element Method	soft	ware	corre	ectly
2. To know	about the types of element used, type of analysis done	e, in	terpre	tatic	on of
3. To acqui	nethod of solving and analyzing a given problem. re the basic skills in using professional level finite element	sof	tware	, apr	olied
4. To analy investigation	rral, heat transfer and fluid flow components at various loa vze a physical problem, develop experimental procedur ting the problem, and effectively perform and document fi	es	for ac		
	ate simple mechanisms using simulation software.	10 -	4 -	15	
	nechanisms using simulation software like MATLAB/ADAN			15	
Simulation of r	nechanism: Simple pendulum, Four bar mechanism, Slider cran	nk m	iechan	ism,	Cam
and Follower m	echanism, Spur gear drive, Piston and Cylinder.				
Analysis of me	chanical machine components using analysis software like A	NS	YS/ N.	AST	RAN
etc.			30		
Static Structura	l analysis: Truss, Bar, Beam, Axisymmetric analysis.				
Dynamic analy	sis: Modal, Harmonic, Transient analysis, Buckling analysis,	Non	ı linea	r ana	alysis
Thermal analy	sis: Conduction heat transfer, Heat transfer with Conduction	on a	nd Co	onvec	ction,
Transient heat c	conduction analysis.				
Coupled field a	nalysis, Contact analysis, Fluid flow analysis and Design optimi	zatio	on.		
COURSE OUT					
Student will b		c			
	e method, meshing, analysis and optimize the given problem applications.	n 10:	r struc	πura	I and
	structural analyses and selected other analysis like nor y analysis, harmonic analysis, steady-state heat conduction			es/na	tural
• Use prof	essional level finite element software to solve engineering		•	s in	solid
	cs and heat transfer				
	simple kinematic mechanisms using simulation software.				
Recogniz	ze sources of errors in FEA.				
		ΓΟΊ	FAL :	45 H	ours

122EDP09	VIBRATION LABORATORY	Ĺ	T	P	С
		0	0	2	1
2. To det	luate the stiffness and natural frequency of spring-mass sy ermine the natural frequencies of damped and undamped to le rotor systems and obtain the radius of gyration of a body	orsi	onal v		
3. To acc	uire the critical speed of shaft supported at its ends. tess the natural frequency, damping coefficient, mode sha	apes	of sp	ecir	nens
under 5. To det	free vibrations. ermine the natural frequency of specimens under forced vi	•	1		
	ERIMENTS: 30				
,	nination of stiffness and natural frequency of undamped sp ed in series, parallel and series-parallel fashions	ring	-mass	sys	tems
	nination of effective radius of gyration of an irregular body tion of tri filar suspension	' thr	ough	torsi	onal
3) Detern	nination of natural frequency a single rotor un damped sha	ft sy	stem		
4) Detern	nination of natural frequency a single rotor damped shaft s	yste	m		
5) Detern	nination of critical speed of shaft				
· · ·	nination of natural frequency and mode shapes of specimen prough modal analysis	ns si	upport	ed a	t its
7) Detern	nination of damping coefficient of specimens supported at	its e	ends		
,	l vibration of specimens supported under simply supported ary conditions – Determination of natural frequency	and	l canti	leve	r
COURSE OU					
Student will b					
	te the stiffness and natural frequency of spring-mass syste	me			
	nine the natural frequencies of damped and undamped tors		al vib	otio	ns of
	rotor systems	51011		allo	115 01
U	e the critical speed of shaft supported at its ends.				
-	the natural frequency, damping coefficient, mode shapes	of or	noim	.	Indor
	brations.	лs	Jechni	511S U	muer
• Detern	nine the natural frequency of specimens under forced vibra	tion	s.		
		ΤΟ	FAL :	45 H	lours

		L	Т	Р	С
X22EDA07	ENGLISH FOR RESEARCH PAPER WRITING	2	0	0	0
OBJECTIVES): 				
1. To tea	ch how to improve writing skills and level of readability.				
2. To tell	about what to write in each section.				
3. To sun	nmarize the skills needed when writing a Title.				
4. To Inf	er the skills needed when writing the Conclusion.				
	ure the quality of paper at very first-time submission.				
	RODUCTION TO RESEARCH PAPER WRITING			6	
U	Preparation, Word Order, Breaking up long sentences, Stru		0	0	-
	s, Being Concise and Removing Redundancy, Avoidir	ng A	mbig	guity	and
Vagueness					
	SENTATION SKILLS			6	
	ho Did What, Highlighting Your Findings, Hedging	-	d C	ritici	zing,
	and Plagiarism, Sections of a Paper, Abstracts, Introduction	n			
	TLE WRITING SKILLS			6	
	needed when writing a Title, key skills are needed when w				
	needed when writing an Introduction, skills needed when v		ng a F	Revie	ew of
	Methods, Results, Discussion, Conclusions, The Final Ch	eck			
	SULT WRITING SKILLS		_	6	
	ded when writing the Methods, skills needed when writing	-			
	en writing the Discussion, skills are needed when writing	the C	Concl	usio	ns
	RIFICATION SKILLS			6	
-	s, checking Plagiarism, how to ensure paper is as good as i	t coi	ild po	DSS1b	ly be
the first- time		ОТ	AT . /	<u> </u>	
COUDSE OU			4L : .	50 H	ours
COURSE OU Student will b					
		da	1.:1:4-		
	stand that how to improve your writing skills and level of r	eada	onny	/	
	about what to write in each section				
	stand the skills needed when writing a Title				
	stand the skills needed when writing the Conclusion				
	the good quality of paper at very first-time submission				
REFERENCE			NT		v71-
	Wallwork, "English for Writing Research Papers", Sp	ring	er no	ew	Y OFK,
	echt Heidelberg London, 2011. "How to Write and Publish a Scientific Paper". Combridg	o I I-	iver	.: ₄₁ . т	Drace
•	, "How to Write and Publish a Scientific Paper", Cambridg	e Ur	nvers	sity I	ress,
2006.	out D "Writing for Science" Vale University Dress (as	a:1_1			
	ort R, "Writing for Science", Yale University Press (av	anat	ne o	u U	Jogie
), 2006. Joan N. "Handbook of Writing for the Mathematical	Soia	ncos'	, c	гллл
-	an N, "Handbook of Writing for the Mathematical	Scie	nces	, ວ	LAIVI.
Highm	an's book, 1998.				

X22EDA08	DISASTER MANAGEMENT	L 2	Т 0	P 0	C 0
OBJECTIVES	:	4	U	U	U
	nmarize basics of disaster				
2. To exp	lain a critical understanding of key concepts in disaster	risk	reduc	ctior	and
human	itarian response.				
3. To Illu	strate disaster risk reduction and humanitarian response I	policy	y and	pra	ctice
from m	ultiple perspectives.				
4. To des	cribe an understanding of standards of humanitarian resp	onse	and	prac	ctical
relevan	ce in specific types of disasters and conflict situations.				
5. To dev	elop the strengths and weaknesses of disaster management	t app	roach	les.	
UNIT I INTR				6	
Disaster: Defi	nition, Factors and Significance; Difference between Ha	zard	and	Disa	aster;
	anmade Disasters: Difference, Nature, Types and Magnitu	de.			
	ERCUSSIONS OF DISASTERS AND HAZARDS			6	
	nage, Loss of Human and Animal Life, Destruction of H	-			
	hquakes, Volcanisms, Cyclones, Tsunamis, Floods, Drou	-			
	d Avalanches, Man-made disaster: Nuclear Reactor Me				
	Slicks and Spills, Outbreaks of Disease and Epidemics, W	/ar a	nd Co	onfli	cts.
	ASTER PRONE AREAS IN INDIA			6	
	nic Zones; Areas Prone to Floods and Droughts, Landslide				
	o Cyclonic and Coastal Hazards with Special Reference	to T	sunai	mi; 1	Post-
	ses and Epidemics				
	ASTER PREPAREDNESS AND MANAGEMENT			6	
-	Monitoring of Phenomena Triggering a Disaster or Haz				
	ion of Remote Sensing, Data from Meteorological and Othe	er Ag	encie	es, N	Iedia
*	rnmental and Community Preparedness.				
	ASSESSMENT			6	
	Concept and Elements, Disaster Risk Reduction, Global an				
	. Techniques of Risk Assessment, Global Co-Operation in			sess	ment
and Warning,	People's Participation in Risk Assessment. Strategies for S				
]	OTA	L:3	0 H	ours
COURSE OUT					
Student will be					
	arize basics of disaster.				
-	n a critical understanding of key concepts in disaster i	risk	reduc	tion	and
	itarian response.				
	te disaster risk reduction and humanitarian response policy	/ and	prac	tice	from
1	e perspectives.				
	be an understanding of standards of humanitarian resp	onse	and	prac	ctical
relevan	ce in specific types of disasters and conflict situations.				
	p the strengths and weaknesses of disaster management ap	proa	ches.		
REFERENCE					
	L., "Disaster Administration and Management Text and C	ase S	Studie	es",]	Deep
	p Publication Pvt. Ltd., New Delhi, 2009.				
	a Rai, Singh AK, "Disaster Management in India: Persp	ectiv	es, is	sues	s and
	es", New Royal book Company, 2007.	~		_	
	Pardeep Et.Al., "Disaster Mitigation Experiences and Ret	tlecti	ons",	Pre	ntice
Hall of	India, New Delhi, 2001.				

X22EDA09	CONSTITUTION OF INDIA	L 2	T 0	P 0	C 0
OBJECTIVES			U	U	U
	erstand the premises informing the twin themes of liberty	and	freed	lom	from
	rights perspective.				
	lress the growth of Indian opinion regarding modern I	ndian	inte	llect	uals'
constit					
3. To know	ow the role and entitlement to civil and economic rig	hts a	s we	ell as	s the
	nce nation hood in the early years of Indian nationalism.				
4. To add	ress the role of socialism in India after the commencement	nt of	the E	Bolsł	nevik
Revolu	tionin1917 and its impact on the initial drafting of the Indi	an C	onstit	utio	n.
	ORY OF MAKING OF THE INDIAN CONSTITUTIO			5	
History, Draft	ng Committee, (Composition & Working)				
	LOSOPHY OF THE INDIAN CONSTITUTION			5	
Preamble, Sali	ent Features				
UNIT III CO	NTOURS OF CONSTITUTIONAL RIGHTS AND DU	JTIE	S	5	
Fundamental I	Rights, Right to Equality, Right to Freedom, Right against	Expl	oitati	on, I	Right
	Religion, Cultural and Educational Rights, Right to Const	-			0
	ciples of State Policy, Fundamental Duties.				,
	GANS OF GOVERNANCE			5	
Parliament, C	omposition, Qualifications and Disqualifications, Powe	ers a	nd F	unct	ions,
	sident, Governor, Council of Ministers, Judiciary, Appoin				
	lifications, Powers and Functions.				
<u> </u>	AL ADMINISTRATION			5	
District's Adn	ninistration head: Role and Importance, Municipalities: In	ntrod	uctio	n, M	layor
	Elected Representative, CEO, Municipal Corporation				
Introduction,	PRI: Zila Pachayat. Elected officials and their roles, C	EO Z	Zila I	Pach	ayat:
Position and r	ole. Block level: Organizational Hierarchy (Different de	partm	nents)), Vi	llage
level: Role of	Elected and Appointed officials, Importance of grass root	demo	ocrac	y.	
UNIT VI ELI	ECTION COMMISSION			5	
Election Com	nission: Role and Functioning. Chief Election Commiss	ioner	and	Ele	ction
Commissioner	s - Institute and Bodies for the welfare of SC/ST/OBC and	l wor	nen.		
	J	ГОТА	AL:3	30 He	ours
COURSE OUT	COMES:				
Student will be	e able to				
• Discus	s the growth of the demand for civil rights in India for t	he b	ulk o	f Inc	dians
before	the arrival of Gandhi in Indian politics.				
• Discus	s the intellectual origins of the framework of argument	that	info	rmea	d the
Conce	ptualization of social reforms leading to revolution in India	a.			
• Discus	s the circumstances surrounding the foundation of the Cong	gress	Socia	list I	Party
[CSP]	under the leadership of Jawaharlal Nehru and the ever	itual	failu	re o	f the
	al of direct elections through adult suffrage in the Indian C				
	s the passage of the Hindu Code Bill of 1956.				
REFERENCE					
1. The Co	onstitution of India, 1950 (Bare Act), Government Publicat	ion.			
2. Dr.S.N	.Busi, Dr.B. R.Ambedkar "Framing of Indian Constitution	",1st	Editi	on, 2	2015.
	in, "Indian Constitution Law", 7th Edn., Lexis Nexis, 201				
4. D.D. B	asu, "Introduction to the Constitution of India", Lexis New	xis, 2	015.		

பற்றப்பிட்டதுல்லையப்ப 2 0 0 0 UNIT I சங்க இலக்கியம் 6 1. தமிழின் துவக்க தால் தொல்காப்பியம் – எழுத்து, சொல், பொருள் 6 2. அகநானது (82) - இயற்கை இன்னிசை அரங்கம் 6 3. குறிஞ்சிப் பாட்டின் மலர் க்காட்சி 4 பற்றானு (95,195) 6 1. அற்றெறித் தமிழ் 6 6 1. அற்றெறித் தமிழ் 6 1. அற்றெறித் தற்று வகுத்த திருவள்ளுவர் – அறம் வலியுறுத்தல், அன்புடைமை, ஒப்புரவறிதல் அறிதல், ஈகை, புகழ் 6 2. பிற அற்தால்கள் - இலக்கிய மருந்து – ஏலாதி, சிறபஞ்சமூலம், திரிகடுகம், ஆசாரக்கோவை (தாய்மையை வலியுறுத்தும் நால்) 6 1. கண்ணதியின் புரட்சி 6 1. கண்ணதியின் புரட்சி 6 2. சமூகசேவை இலக்கியம் மணிமேகலை – சிறைக்கோட்டம் அறக்கோட்டமாகிய காதை 6 1. கண்ணதிற்கத் தேர் கொடுத்தது, பேகன் மயிலுக்குப் போர் வை கொடுத்தது, அரசர் பண்புகள் 6 2. நற்றிணை – வன்னைக்குரிய புன்னை கிறப்பு 6 3. திருமத்தானையுறினியி வன்னனாற் 6 4. தர் மச் சாலையை நினவிய வள்ளலார் 9 5. அன்னவு வள்ளலானான் 6 6. அகதானுறு (1) – பன்னடு கலித்தொகை (1) – யானை புறா ஆக்இயை பற்றிய செய்திகள்	X22EDA10	நற்றமிழ் இலக்கியம்	L	Т	Р	С
 தமிழின் துவக்க தால் தொல்காப்பியம் எழுத்து, சொல், பொருள் அகநானாறு (82) - இயற்கை இன்னிசை அரங்கம் குறிஞ்சிப் பாட்டின் மலர்க்காட்கி புறநானாறு (95,195) - போரை நிறுத்திய ஒளவையார் UNIT II அறதெறித் தமிழ் வற்றைறி வகுத்த திருவள்ளுவர் அறற்றி வகுத்த திருவள்ளுவர் அறற்றி வகுத்த திருவள்ளுவர் அறற்ற வகுத்த திருவள்ளுவர் அறற் வலியுறுத்தல், அன்புடைமை, ஒப்புரவறிதல் அறிதல், ஈகை, புகழ் பிற அறதுரல்கள் - இலக்கிய மருந்து - ஏலாதி, சிறுபஞ்சமூலம், திரிகடுகம், ஆசாரக்கோவை (தூய்மையை வலியுறுத்தும் நால்) UNIT III இரட்டைக்காப்பியங்கள்	_		2	0	-	0
- எழுத்து, சொல், பொருள் 2. அகநானூறு (82) - இயற்கை இன்னிசை அரங்கம் 3. குறிஞ்சிப் பாட்டின் மலர்க்காட்சி 4. புறநானூறு (95,195) - போரை நிறுத்திய ஒளவையார் UNIT II அறதெறித்தவிழ் 6 1. அறதெறி வகுத்த திருவள்ளுவர் - அறம் வலியுறுத்தல், அன்புடைமை, ஒப்புரவறிதல் அறிதல், ஈகை, புகழ் 2. பிற அறதால்கள் - இலக்கிய மருந்து – ஏலாதி, சிறுபஞ்சமூலம், திரிகடுகம், ஆசாரக்கோவை (தாய்மையை வலியுறுத்தும் நால்) UNIT III இரட்டைக்காப்பியங்கள் 6 1. கண்ணகியின் புரட்சி - சிலப்பதிகார வழக்குரை காதை 2. சமூகசேவை இலக்கியம் மணிமேகலை - சிறைக்கோட்டம் அறக்கோட்டமாகிய காதை UNIT IV அருள்றைறித் தமிழ் 6 1. சிறுபாணாற்றப்படை - பாரி முல்லைக்குத் தேர் கொடுத்தது, பேகன் மயிலுக்குப் போர் வை கொடுத்தது, அதியமான் ஒளவைக்கு நெல்லிக்கனி கொடுத்தது, அரசர் பண்புகள் 2. தற்றிணை - அன்னைக்குரிய புன்னை சிறப்பு 3. திருமந்திரம் (617, 618) - இயமம் நியமம் விதிகள் 4. தர்மச் சாலையை நிறுவிய வள்ளலார் 5. புறநானாறு – சிறுவனே வள்ளலானான் 6. அகநானூறு (4) - வண்டு நற்றிணை (11) - நண்டு கலித்தொகை (11) - மன்					6	
 அகநானூறு (82) இயற்கை இன்னிசை அரங்கம் குறிஞ்சிப் பாட்டின் மலர் க்காட்சி பறநானூறு (95, 195)						
- இயற்கை இன்னிசை அரங்கம் 3. குறிஞ்சிப் பாட்டின் மலர்க்காட்சி 4. புறநானாறு (95,195) - போரை நிறுத்திய ஒளவையார் UNIT II அறதெறித் தமிழ் 6 1. அறநெறி வகுத்த திருவள்ளுவர் - அறம் வலியுறுத்தல், அன்புடைமை, ஒப்புரவறிதல் அறிதல், ஈகை, புகழ் 2. பிற அறதூல்கள் - இலக்கிய மருந்து – ஏலாதி, சிறுபஞ்சமூலம், திரிகடுகம், ஆசாரக்கோவை (தூய்மையை வலியுறுத்தும் தூல்) UNIT III இரட்டைக்காப்பியங்கள் 6 1. கண்ணடுயின் புரட்சி - சிலப்பதிகார வழக்குரை காதை 2. சமூகசேவை இலக்கியம் மணிமேகலை - சிறைக்கோட்டம் அறக்கோட்டமாகிய காதை UNIT IV அருள்தெறித் தமிழ் 6 1. சிறுபாணாற்றுப்படை - பாரி முல்லைக்குத் தேர் கொடுத்தது, பேகன் மயிலுக்குப் போர் வை கொடுத்தது, அதியமான் ஒளவைக்கு நெல்லிக்கனி கொடுத்தது, அரசர் பண்புகள் 2. தற்றிணை - அன்னைக்குரிய புன்னை சிறப்பு 3. திறமந்திரம் (617, 618) - இயமம் நியமம் விதிகள் 4. தர்மச் சாலையை நிறுவிய வள்ளலார் 5. புறநானுறு - கிறுவனே வள்ளலானான் 6. அகநானூறு (4) - வண்டு நற்றிணை (11) - நண்டு கலித்தொகை (11) - மண்டு						
 3. குறிஞ்சிப் பாட்டின் மலர் க்காட்சி 4. புறநானூற (95, 195) - போரை நிறுத்திய ஒளவையார் WNIT II அறநெறித் தவிழ் 6 1. அறநெறி வகுத்த திருவள்ளுவர் - அறம் வலியுறுத்தல், அன்புடைமை, ஒப்புரவறிதல் அறிதல், ஈகை, புகழ் 2. பிற அறநூல்கள் - இலக்கிய மருந்து - ஏலாதி, சிறுபஞ்சமூலம், திரிகடுகம், ஆசாரக்கோவை (தூய்மையை வலியுறுத்தும் நூல்) UNIT III இரட்டைக்காப்பியங்கள் 6 1. கண்ணகியின் புரட்சி - சிலப்பதிகார வழக்குரை காதை 2. சமூகசேவை இலக்கியம் மணிமேகலை - சிறைக்கோட்டம் அறக்கோட்டமாகிய காதை UNIT IV அருள்தெறித் தமிழ் 6 1. சிறுபாணாற்றுப்படை - பாரி முல்லைக்குத் தேர் கொடுத்தது, பேகன் மயிலுக்குப் போர்வை கொடுத்தது, அரசர் பண்புகள் 2. நற்றிணை - ஆன்னைக்குரிய புன்னை சிறப்பு 3. திருமந்திரம் (617, 618) - இயமம் நியமம் விதிகள் 4. கர் மச் சலலைய நிறவிய வள்ளலார் 5. புறநானுறு - சிறுவனே வள்ளலானான் 6. அகநானூறு (4) - வண்டு தற்குனை (10) - நண்டு கலித்தொனை (10) - நண்டு கலித்தொனை (10) - நண்டு கலித்தைராற் (10) - நண்டு கலித்தொனை (11) - நண்டு கலித்தைன் (27) - மான் 						
 பற்றானாறு (95,195) -போரை நிறுத்திய ஔனைவயார் போரை நிறுத்திய ஔனைவயார் அறநெறி வகுத்த திருவள்ளுவர் - அறம் வலியுறுத்தல், அன்புடைமை, ஒப்புரவறிதல் அறிதல், ஈகை, புகழ் பிற அறதூல்கள் - இலக்கிய மருந்து - ஏலாதி, திறுபஞ்சமூலம், திரிகடுகம், ஆசாரக்கோவை (தாய்மையை வலியுறுத்தும் நூல்) UNIT III இரட்டைக்காப்பியங்கள் 6 கண்ணகியின் புரட்சி - சிலைக்கியம் மணிமேகலை - சிலைக்கியம் மணிமேகலை - சிலைக்குத் தேர் கொடுத்தது, பேகன் மயிலுக்குப் போர் வை கொடுத்தது, அதியமான் ஔவைக்கு நெல்லிக்கனி கொடுத்தது, அரசர் பண்புகள் நிறுமிணை - வன்னை சிறப்பு						
- போரை நிறுத்திய ஒளவையார் UNIT II அறநெறித் தமிழ் 6 1. அறநெறி வகுத்த திருவள்ளுவர் - அறம் வலியுறுத்தல், அன்புடைமை, ஒப்புரவறிதல் அறிதல், ஈகை, புகழ் 2. பிற அறுநால்கள் - இலக்கிய மருந்து – ஏலாதி, கிறுபஞ்சமூலம், திரிகடுகம், ஆசாரக்கோவை (தாய்மையை வலியுறுத்தும் நால்) UNIT III இரட்டைக்காப்பியங்கள் 6 1. கண்ணகியின் புரட்சி - சிலப்பதிகார வழக்குரை காதை 2. சமூகசேவை இலக்கியம் மணிமேகலை - கிறைக்கோட்டம் அறக்கோட்டமாகிய காதை UNIT IV அருள்நெறித் தமிழ் 6 1. கிறுபாணாற்றுப்படை - பாரி முல்லைக்குத் தேர் கொடுத்தது, பேகன் மயிலுக்குப் போர் வை கொடுத்தது, அதியமான் ஒளவைக்கு நெல்லிக்கனி கொடுத்தது, அரசர் பண்புகள் 2. நற்றிணை - அன்னைக்குரிய புன்னை சிறப்பு 3. திருமந்திரம் (617, 618) - இயமம் நியமம் விதிகள் 4. தர் மச் சாலையை நிறுவிய வள்ளலார் 5. புறநானுமு - சிறுவனே வள்ளலானான் 6. அகநானுமு (4) - வண்டு நற்றிணை (11) - நண்டு கலித்தொகை (11) - யானை, புறா ஐந்திணை 50 (27) - மான்						
 UNIT II அறநெறித் தமிழ் வறநெறி வகுத்த திருவள்ளுவர் அறம் வலியுறுத்தல், அன்புடைமை, ஒப்புரவறிதல் அறிதல், ஈகை, புகழ் பிற அறதால்கள் - இலக்கிய மருந்து ஏலாதி, சிறுபஞ்சமூலம், திரிகடுகம், ஆசாரக்கோவை (தூய்மையை வலியுறுத்தும் தால்) UNIT III இரட்டைக் காப்பியங்கள் கண்ணகியின் புரட்சி சிலைப்பதிகார வழக்குரை காதை Propata பிர் முல்லைக்குத் தேர் கொடுத்தது, பேகன் மயிலுக்குப் போர் வை கொடுத்தது, அதியமான் ஒளவைக்கு நெல்லிக்கனி கொடுத்தது, அரசர் பண்புகள் இருமற்கிரம் (617, 618) இரமைநிரம் (617, 618) இரமை திரம் (617, 618) இரமை திரம் (617, 618) இரமை நியமம் விதிகள் திரம் ச் சாலையை நிறவிய வள்ளலார் புறநானுறு சிறுவனே வள்ளலானான் அக்குதானுறு(4) வன்டு தன்டு கன் பிறானை குற்குக்குதான் கன் கித்தொகை (1) மானன் புறான் குன் குற்கில் கன் கித்தின் காலன் (1) 						
 அறநெறி வகுத்த திருவள்ளுவர் அறம் வலியுறுத்தல், அன்புடைமை, ஒப்புரவறிதல் அறிதல், ஈகை, புகழ் பிற அறதால்கள் - இலக்கிய மருந்து 	-				6	
 அறம் வலியுறுத்தல், அன்புடைமை, ஒப்புரவறிதல் அறிதல், ஈகை, புகழ் பிற அறதால்கள் - இலக்கிய மருந்து – ஏலாதி, சிறபஞ்சமூலம், திரிகடுகம், ஆசாரக்கோவை (தாய்மையை வலியுறுத்தும் தால்) UNIT III இரட்டைக் காப்பியங்கள் கண்ணகியின் புரட்சி சிலப்பதிகார வழக்குரை காதை சமூகசேவை இலக்கியம் மணிமேகலை சிறைக்கோட்டம் அறக்கோட்டமாகிய காதை UNIT IV அருள்தெறித் தமிழ் சிறபாணாற்றுப்படை பாரி முல்லைக்குத் தேர் கொடுத்தது, பேகன் மயிலுக்குப் போர்வை கொடுத்தது, அதியமான் ஒளவைக்கு நெல்லிக்கனி கொடுத்தது, அரசர் பண்புகள் தற்றிணை						
புகழ் 2. பிற அறதால்கள் - இலக்கிய மருந்து - ஏலாதி, சிறுபஞ்சமூலம், திரிகடுகம், ஆசாரக்கோவை (தாய்மையை வலியுறுத்தும் நால்) UNIT III இரட்டைக்காப்பியங்கள் 6 1. கண்ணகியின் புரட்சி - சிலப்பதிகார வழக்குரை காதை 2. சமூகசேவை இலக்கியம் மணிமேகலை - சிறைக்கோட்டம் அறக்கோட்டமாகிய காதை UNIT IV அருள்தெறித் தமிழ் 6 1. சிறுபாணாற்றுப்படை - பாரி முல்லைக்குத் தேர் கொடுத்தது, பேகன் மயிலுக்குப் போர் வை கொடுத்தது, அதியமான் ஒளவைக்கு நெல்லிக்கனி கொடுத்தது, அரசர் பண்புகள் 2. நற்றிணை - அன்னைக்குரிய புன்னை சிறப்பு 3. திருமந்திரம் (617, 618) - இயமம் நியமம் விதிகள் 4. தர் மச் சாலையை நிறுவிய வள்ளலார் 5. புறதானுறு - சிறுவனே வள்ளலானான் 6. அகநானூறு(4) - வண்டு நற்றிணை (11) - நண்டு கலித்தொகை (11) - மன்				di m	· ~ -	
 பிற அறதால்கள் - இலக்கிய மருந்து – ஏலாதி, சிறபஞ்சமூலம், திரிகடுகம், ஆசாரக்கோவை (தாய்மையை வலியுறுத்தும் நால்) UNIT III இரட்டைக் காப்பியங்கள் கண்ணகியின் புரட்சி சிலப்பதிகார வழக்குரை காதை சமூகசேவை இலக்கியம் மணிமேகலை		ന്ന ബംപന്നിന്നമാംഗ് ഷംപറ്റുംലാന് ഒററ്റുംബ്വിറ്റെ ട്ര	அறுத	6U, PP	60165	·
- ஏலாதி, சிறுபஞ்சமூலம், திரிகடுகம், ஆசாரக்கோவை (தூய்மையை வலியுறுத்தும் தூல்) UNIT III இரட்டைக்காப்பியங்கள் 6 1. கண்ணகியின் புரட்சி - சிலப்பதிகார வழக்குரை காதை 2. சமூகசேவை இலக்கியம் மணிமேகலை - சிறைக்கோட்டம் அறக்கோட்டமாகிய காதை UNIT IV அருள்நெறித் தமிழ் 6 1. சிறுபாணாற்றுப்படை - பாரி முல்லைக்குத் தேர் கொடுத்தது, பேகன் மயிலுக்குப் போர் வை கொடுத்தது, அதியமான் ஒளவைக்கு நெல்லிக்கனி கொடுத்தது, அரசர் பண்புகள் 2. நற்றிணை - அன்னைக்குரிய புன்னை சிறப்பு 3. திருமந்திரம் (617, 618) - இயமம் நியமம் விதிகள் 4. தர் மச் சாலையை நிறுவிய வள்ளலார் 5. புறதானுறு - சிறுவனே வள்ளலானான் 6. அகநானூறு(4) - வண்டு நற்றிணை (11) - நண்டு கலித்தொகை (11) - யானை, புறா ஐந்திணை 50 (27) - மான்						
வலியுறுத்தும் நால்) UNIT III இரட்டைக்காப்பியங்கள் 6 1. கண்ணகியின் புரட்சி - சிலப்பதிகார வழக்குரை காதை 2. சமூகசேவை இலக்கியம் மணிமேகலை - சிறைக்கோட்டம் அறக்கோட்டமாகிய காதை UNIT IV அருள்நெறித் தமிழ் 6 1. சிறுபாணாற்றுப்படை - பாரி முல்லைக்குத் தேர் கொடுத்தது, பேகன் மயிலுக்குப் போர் வை கொடுத்தது, அதியமான் ஒளவைக்கு நெல்லிக்கனி கொடுத்தது, அரசர் பண்புகள் 2. நற்றிணை - அன்னைக்குரிய புன்னை சிறப்பு 3. திருமந்திரம் (617, 618) - இயமம் நியமம் விதிகள் 4. தர் மச் சாலையை நிறுவிய வள்ளலார் 5. புறநானுறு - சிறுவனே வள்ளலானான் 6. அகநானுறு (4) - வண்டு நற்றிணை (11) - நண்டு கலித்தொகை (11) - யானை, புறா ஐந்திணை 50 (27) - மான்	-		(and			
UNIT III இரட்டைக்காப்பியங்கள் 6 1. கண்ணகியின் புரட்சி - சிலப்பதிகார வழக்குரை காதை 2. சமூகசேவை இலக்கியம் மணிமேகலை - சிறைக்கோட்டம் அறக்கோட்டமாகிய காதை UNIT IV அருள்நெறித் தமிழ் 6 1. சிறைபாணாற்றுப்படை 6 1. சிறுபாணாற்றுப்படை 6 1. சிறுபாணாற்றுப்படை 6 1. சிறுபாணாற்றுப்படை 6 2. நற்றினை - பாரி முல்லைக்குத் தேர் கொடுத்தது, பேகன் மயிலுக்குப் போர் வை கொடுத்தது, அதியமான் ஒளவைக்கு நெல்லிக்கனி கொடுத்தது, அரசர் பண்புகள் 2. நற்றிணை - அன்னைக்குரிய புன்னை சிறப்பு 3. திருமந்திரம் (617, 618) - இயமம் நியமம் விதிகள் 4. தர் மச் சாலையை நிறுவிய வள்ளலார் 5. புறநானுறு 5. புறநானுறு (4) - வண்டு நற்றிணை (11) - நண்டு கலித்தொகை (11) - மானன், புறா ஐந்திணை 50 (27) - மான்			(ളിവ	160)[[16010	
 கண்ணகியின் புரட்சி சிலப்பதிகார வழக்குரை காதை சிலைப்பதிகார வழக்குரை காதை சமூகசேவை இலக்கியம் மணிமேகலை சிறைக்கோட்டம் அறக்கோட்டமாகிய காதை UNIT IV அருள்நெறித் தமிழ் 6 சிறுபாணாற்றுப்படை பாரி முல்லைக்குத் தேர் கொடுத்தது, பேகன் மயிலுக்குப் போர் வை கொடுத்தது, அதியமான் ஒளவைக்கு நெல்லிக்கனி கொடுத்தது, அரசர் பண்புகள் நற்றிணை அன்னைக்குரிய புன்னை சிறப்பு திருமந்திரம் (617, 618) இயமம் விதிகள் தர் மச் சாலையை நிறுவிய வள்ளலார் புறநானுறு	606010	பிற்றது மற்ஸ்)				
 - சிலப்பதிகார வழக்குரை காதை 2. சமூகசேவை இலக்கியம் மணிமேகலை - சிறைக்கோட்டம் அறக்கோட்டமாகிய காதை WINT IV அருள்நெறித் தமிழ் 6 1. சிறுபாணாற்றுப்படை - பாரி முல்லைக்குத் தேர் கொடுத்தது, பேகன் மயிலுக்குப் போர் வை கொடுத்தது, அதியமான் ஒளவைக்கு நெல்லிக்கனி கொடுத்தது, அரசர் பன்புகள் 2. நற்றிணை - அன்னைக்குரிய புன்னை சிறப்பு 3. திருமந்திரம் (617, 618) - இயமம் நியமம் விதிகள் 4. தர் மச் சாலையை நிறுவிய வள்ளலார் 5. புறநாணு - சிறுவனே வள்ளலானான் 6. அகநானுறு (4) - வண்டு நற்றிணை (11) - நண்டு கலித்தொகை (11) - யானை, புறா ஐந்திணை 50 (27) - மான் 	UNIT III இரப்	டைக் காப்பியங்கள்			6	
 சமூகசேவை இலக்கியம் மணிமேகலை - சிறைக்கோட்டம் அறக்கோட்டமாகிய காதை பார் பு அருள்நெறித் தமிழ் சிறுபாணாற்றுப்படை பாரி முல்லைக்குத் தேர் கொடுத்தது, பேகன் மயிலுக்குப் போர்வை கொடுத்தது, அதியமான் ஒளவைக்கு நெல்லிக்கனி கொடுத்தது, அரசர் பண்புகள் நற்றிணை - அன்னைக்குரிய புன்னை சிறப்பு திருமந்திரம் (617, 618) - இயமம் நியமம் விதிகள் தர் மச் சாலையை நிறுவிய வள்ளலார் புறநானுறு - சிறுவனே வள்ளலானான் அக்நானுறு (4) - வண்டு நற்றிணை (11) - நண்டு கலித்தொகை (11) - யானை, புறா ஐந்திணை 50 (27) - மான் 	1. கண்	ணகியின் புரட்சி				
- சிறைக்கோட்டம் அறக்கோட்டமாகிய காதை UNIT IV அருள்நெறித் தமிழ் 6 1. சிறுபாணாற்றுப்படை - பாரி முல்லைக்குத் தேர் கொடுத்தது, பேகன் மயிலுக்குப் போர்வை கொடுத்தது, அதியமான் ஔவைக்கு நெல்லிக்கனி கொடுத்தது, அரசர் பண்புகள் 2. நற்றிணை - அன்னைக்குரிய புன்னை சிறப்பு 3. திருமந்திரம் (617, 618) - இயமம் நியமம் விதிகள் 4. தர்மச் சாலையை நிறுவிய வள்ளலார் 5. புறநானூறு - சிறுவனே வள்ளலானான் 6. அகநானூறு (4) - வண்டு நற்றிணை (11) - நண்டு கலித்தொகை (11) - யானை, புறா						
 UNIT IV அருள்நெறித் தமிழ் சிறுபாணாற்றுப்படை பாரி முல்லைக்குத் தேர் கொடுத்தது, பேகன் மயிலுக்குப் போர் வை கொடுத்தது, அதியமான் ஔவைக்கு நெல்லிக்கனி கொடுத்தது, அரசர் பண்புகள் 2. நற்றிணை அன்னைக்குரிய புன்னை சிறப்பு 3. இருமந்திரம் (617, 618) இயமம் நியமம் விதிகள் 4. தர் மச் சாலையை நிறுவிய வள்ளலார் 5. புறநானுறு - சிறுவனே வள்ளலானான் 6. அகநானூறு (4) - வண்டு நற்றினை (11) - நண்டு கலித்தொகை (11) - யானை, புறா ஐந்திணை 50 (27) - மான் 						
 சிறபாணாற்றப்படை பாரி முல்லைக்குத் தேர் கொடுத்தது, பேகன் மயிலுக்குப் போர்வை கொடுத்தது, அதியமான் ஔவைக்கு நெல்லிக்கனி கொடுத்தது, அரசர் பண்புகள் நற்றிணை - அன்னைக்குரிய புன்னை சிறப்பு திருமந்திரம் (617, 618) - இயமம் நியமம் விதிகள் தர்மச் சாலையை நிறுவிய வள்ளலார் புறநானுறு - சிறுவனே வள்ளலானான் அதுவனே வள்ளலானான் அதுவனே வள்ளலானான் அதுவனே வள்ளலானான் அது பில் - வண்டு நற்றினை (11) - நண்டு கலித்தொகை (11) - யானை, புறா ஐந்திணை 50 (27) - மான் 	- ମିଶ	றைக்கோட்டம் அறக்கோட்டமாகிய காதை				
 பாரி முல்லைக்குத் தேர் கொடுத்தது, பேகன் மயிலுக்குப் போர்வை கொடுத்தது, அதியமான் ஔவைக்கு நெல்லிக்கனி கொடுத்தது, அரசர் பண்புகள் நற்றிணை அன்னைக்குரிய புன்னை சிறப்பு திருமந்திரம் (617, 618) இயமம் நியமம் விதிகள் தர் மச் சாலையை நிறுவிய வள்ளலார் புறநானுறு சிறுவனே வள்ளலானான் அக்நானுறு (4) வண்டு நற்றிணை (11) நண்டு களித்தொகை (11) யானை, புறா ஐந்திணை 50 (27) மான் 	UNIT IV அரு	π்நெறித் தமிழ்			6	
கொடுத்தது, அதியமான் ஔவைக்கு நெல்லிக்கனி கொடுத்தது, அரசர் பண்புகள் 2. நற்றிணை - அன்னைக்குரிய புன்னை சிறப்பு 3. திருமந்திரம் (617, 618) - இயமம் நியமம் விதிகள் 4. தர் மச் சாலையை நிறுவிய வள்ளலார் 5. புறநானூறு - சிறுவனே வள்ளலானான் 6. அகநானூறு (4) - வண்டு நற்றிணை (11) - நண்டு கலித்தொகை (11) - யானை, புறா ஐந்திணை 50 (27) - மான்	-					
பண்புகள் 2. நற்றிணை - அன்னைக்குரிய புன்னை சிறப்பு 3. திருமந்திரம் (617, 618) - இயமம் நியமம் விதிகள் 4. தர்மச் சாலையை நிறுவிய வள்ளலார் 5. புறநானூறு - சிறுவனே வள்ளலானான் 6. அகநானூறு (4) - வண்டு நற்றிணை (11) - நண்டு கலித்தொகை (11) - யானை, புறா ஐந்திணை 50 (27) - மான்						
 நற்றிணை அன்னைக்குரிய புன்னை சிறப்பு திருமந்திரம் (617, 618) இயமம் நியமம் விதிகள் தர்மச் சாலையை நிறுவிய வள்ளலார் புறநானுறு சிறுவனே வள்ளலானான் அகநானுறு (4) வண்டு நற்றிணை (11)			ந்தத	து, அ	ரசர்	r
- அன்னைக்குரிய புன்னை சிறப்பு 3. திருமந்திரம் (617, 618) - இயமம் நியமம் விதிகள் 4. தர்மச் சாலையை நிறுவிய வள்ளலார் 5. புறநானூறு - சிறுவனே வள்ளலானான் 6. அகநானூறு (4) - வண்டு நற்றிணை (11) - நண்டு கலித்தொகை (11) - யானை, புறா ஐந்திணை 50 (27) - மான்						
 திருமந்திரம் (617, 618) இயமம் நியமம் விதிகள் தர் மச் சாலையை நிறுவிய வள்ளலார் புறநானூறு சிறுவனே வள்ளலானான் அகநானூறு (4) வண்டு நற்றிணை (11) நண்டு						
- இயமம் நியமம் விதிகள் 4. தர்மச் சாலையை நிறுவிய வள்ளலார் 5. புறநானூறு - சிறுவனே வள்ளலானான் 6. அகநானூறு (4) - வண்டு நற்றிணை (11) - நண்டு கலித்தொகை (11) - யானை, புறா ஐந்திணை 50 (27) - மான்						
 4. தர் மச் சாலையை நிறுவிய வள்ளலார் 5. புறநானூறு - சிறுவனே வள்ளலானான் 6. அகநானூறு (4) - வண்டு நற்றிணை (11) - நண்டு கலித்தொகை (11) - யானை, புறா ஐந்திணை 50 (27) - மான் 						
 புறநானுறு சிறுவனே வள்ளலானான் அகநானூறு (4) வண்டு நற்றிணை (11) நண்டு கலித்தொகை (11) யானை, புறா ஐந்திணை 50 (27) மான் பற்றினை 50 (27) 						
- சிறுவனே வள்ளலானான் 6. அகநானூறு (4) - வண்டு நற்றிணை (11) - நண்டு கலித்தொகை (11) - யானை, புறா ஐந்திணை 50 (27) - மான்						
6. அகநானூறு (4) - வண்டு நற்றிணை (11) - நண்டு கலித்தொகை (11) - யானை, புறா ஐந்திணை 50 (27) - மான்						
நற்றிணை (11) - நண்டு கலித்தொகை (11) - யானை, புறா ஐந்திணை 50 (27) - மான்						
கலித்தொகை (11) - யானை, புறா ஐந்திணை 50 (27) - மான்						
ஐந்திணை 50 (27) – மான்						
		• • • •				

UNIT	் V நவீ	ன தமிழ் இலக்கியம்	6
1.	உത	ரநடைத் தமிழ்,	
-	தமிழ	ழின் முதல் புதினம்,	
-	தமிழ	ழின் முதல் சிறுகதை,	
-	கட்(நிரை இலக்கியம்,	
-	பய	ண இலக்கியம்,	
-	நாட	.கம்,	
2.	நாட்	.டு விடுதலை போராட்டமும் தமிழ் இலக்கியமும்,	
3.	சமு	தாய விடுதலையும் தமிழ் இலக்கியமும்,	
4.	பெ	ன் விடுதலையும் விளிம்பு நிலையினரின் மேம்பாட்	டில் தமிழ்
		க்கியமும்,	
5.	அறி	வியல் தமிழ்,	
6.	൫ൢ൏	ணயத்தில் தமிழ்,	
7.			
1.	சுறழ	றச்சூழல் மேம்பாட்டில் தமிழ் இலக்கியம்.	
1.	சுறழ		TOTAL : 30 Hours
1.			TOTAL : 30 Hours
1.			FOTAL : 30 Hours
	தமிழ்	இலக்கிய வெளியீடுகள் / புத்தகங்கள்	FOTAL : 30 Hours
	தமிழ்	இலக்கிய வெளியீடுகள் / புத்தகங்கள் தமிழ் இணைய கல்விக்கழகம் (Tamil Virtual University)	FOTAL : 30 Hours
	<u>தமிழ்</u> 1.] இலக்கிய வெளியீடுகள் / புத்தகங்கள் தமிழ் இணைய கல்விக்கழகம் (Tamil Virtual University) - www.tamilvu.org	TOTAL : 30 Hours
	<u>தமிழ்</u> 1.] இலக்கிய வெளியீடுகள் / புத்தகங்கள் தமிழ் இணைய கல்விக்கழகம் (Tamil Virtual University) - www.tamilvu.org தமிழ் விக்கிப்பீடியா (Tamil Wikipedia)	FOTAL : 30 Hours
	<u>தமிழ்</u> 1. 2.] இலக்கிய வெளியீடுகள் / புத்தகங்கள் தமிழ் இணைய கல்விக்கழகம் (Tamil Virtual University) - www.tamilvu.org தமிழ் விக்கிப்பீடியா (Tamil Wikipedia) -https://ta.wikipedia.org தர் மபுர ஆதீன வெளியீடு வாழ்வியல் களஞ்சியம்	FOTAL : 30 Hours
1.	<u>கமிழ்</u> 1. 2. 3.] இலக்கிய வெளியீடுகள் / புத்தகங்கள் தமிழ் இணைய கல்விக்கழகம் (Tamil Virtual University) - www.tamilvu.org தமிழ் விக்கிப்பீடியா (Tamil Wikipedia) -https://ta.wikipedia.org தர் மபுர ஆதீன வெளியீடு வாழ்வியல் களஞ்சியம் - தமிழ்ப் பல்கலைக்கழகம், தஞ்சாவூர்	FOTAL : 30 Hours
	<u>கமிழ்</u> 1. 2. 3.] இலக்கிய வெளியீடுகள் / புத்தகங்கள் தமிழ் இணைய கல்விக்கழகம் (Tamil Virtual University) - www.tamilvu.org தமிழ் விக்கிப்பீடியா (Tamil Wikipedia) -https://ta.wikipedia.org தர் மபுர ஆதீன வெளியீடு வாழ்வியல் களஞ்சியம் - தமிழ்ப் பல்கலைக்கழகம், தஞ்சாவூர் தமிழ்கலைக் களஞ்சியம்	TOTAL : 30 Hours
	<u>தமிழ்</u> 1. 2. 3. 4.] இலக்கிய வெளியீடுகள் / புத்தகங்கள் தமிழ் இணைய கல்விக்கழகம் (Tamil Virtual University) - www.tamilvu.org தமிழ் விக்கிப்பீடியா (Tamil Wikipedia) -https://ta.wikipedia.org தர் மபுர ஆதீன வெளியீடு வாழ்வியல் களஞ்சியம் - தமிழ்ப் பல்கலைக்கழகம், தஞ்சாவூர்	FOTAL : 30 Hours
	<u>தமிழ்</u> 1. 2. 3. 4.] இலக்கிய வெளியீடுகள் / புத்தகங்கள் தமிழ் இணைய கல்விக்கழகம் (Tamil Virtual University) - www.tamilvu.org தமிழ் விக்கிப்பீடியா (Tamil Wikipedia) - https://ta.wikipedia.org தர் மபுர ஆதீன வெளியீடு வாழ்வியல் களஞ்சியம் - தமிழ்ப் பல்கலைக்கழகம், தஞ்சாவூர் தமிழ்ப் பல்கலைக்கழகம், தஞ்சாவூர் தமிழ்ப் பல்கலைக்கழகம், தஞ்சாவூர் தமிழ்கலைக் களஞ்சியம் - தமிழ் வளர் ச் சித்துறை (thamilvalarchithurai.com) அறிவியல் களஞ்சியம்	TOTAL : 30 Hours
	<u>தமிழ்</u> 1. 2. 3. 4. 5.] இலக்கிய வெளியீடுகள் / புத்தகங்கள் தமிழ் இணைய கல்விக்கழகம் (Tamil Virtual University) - www.tamilvu.org தமிழ் விக்கிப்பீடியா (Tamil Wikipedia) - https://ta.wikipedia.org தர் மபுர ஆதீன வெளியீடு வாழ்வியல் களஞ்சியம் - தமிழ்ப் பல்கலைக்கழகம், தஞ்சாவூர் தமிழ்ப் பல்கலைக்கழகம், தஞ்சாவூர் தமிழ்கலைக் களஞ்சியம் - தமிழ் வளர் ச் சித்துறை (thamilvalarchithurai.com)	TOTAL : 30 Hours

222EDT01	TRIBOLOGY IN DESIGN		Т	Р	С	
22220101		3	0	0	3	
OBJECTIVE	S:					
1. To unders	tand the principles for selecting compatible materials for	r mi	nimizi	ng f	riction	
and wear	in machinery.					
	stand the principles of hydrodynamic and hydrostatic	lubri	catior	n an	d their	
U	d applications.					
	tand the principles of bearing selection and bearing arran	-				
	tand the factors influencing the design and selection of F	oro	us bea	ring	s.	
	boot space and automotive tribology.				-	
	RODUCTION TO TRIBOLOGY	laati	on Cl	9 ;;	instian	
	Friction, Wear, Wear Characterization, Regimes of lubri abrication theories, Effect of pressure and temperature of					
	us forces, Flow through stationary parallel plates. Hagen		•			
	Numerical problems, Concept of lightly loaded bearing				•	
Numerical pr		5, 1	cuon	suq	uation,	
-	DRODYNAMIC LUBRICATION			9		
	elopment mechanism. Converging and diverging films a	and a	oressu	-	nduced	
	d's equation in two dimensions with assumptions. Intro		-			
	with fixed shoe and Pivoted shoes. Expression for loa					
Ŭ	enter of pressure, effect of end leakage on performance,			-		
	rings: Introduction to idealized full journal bearings. Lo			-		
	all journal bearings, Sommerfeld number and its significa					
bearings, Con	nparison between lightly loaded and heavily loaded bea	aring	s, effe	ects	of end	
leakage on pe	erformance, Numerical problems.					
UNIT III HY	(DROSTATIC BEARINGS			9		
Hydrostatic th	nrust bearings, hydrostatic circular pad, annular pad, recta	angu	lar pa	d be	arings,	
types of flow	restrictors, expression for discharge, load carrying capac	city a	and co	ndit	ion for	
minimum po	ower loss, numerical problems, and hydrostatic jour	nal	beari	ngs.	EHL	
Contacts: Int	roduction to Elasto - hydrodynamic lubricated bearings.	Intro	oduction	on to) 'EHL'	
	bin type solution.					
	TIFRICTION BEARINGS			9		
-	selection, nominal life, static and dynamic load bearing	capa	acity,	prob	ability	
	quivalent load, cubic mean load, bearing Mountings.			~		
	rings: Introduction to porous and gas lubricated b		-		-	
	uation for gas lubricated bearings, Equations for porous b	bear	ings ai	nd w	orking	
principal, Fretting phenomenon and its stages.						
	CE AND AUTOMOTIVE TRIBOLOGY	_		9	_	
Introduction - Mechanism, components, liquid and solid lubricants, accelerated testing and						
life testing of space mechanism. Principles of Aerospace eccentric bearing test mechanism.						
Engine Tribology -importance, engine bearings, wheel bearings, tire. Mechanics of load						
transfer - contact area and normal pressure distribution, brakes, effects of service on engine oil properties. Tribology in manufacturing - macro and micro tribology of MEMS materials.						
		OI N	VIEIVIS	ma	terrais.	
recimologies	for machinery diagnosis and prognosis.	יחיי	AT - 4	5 114		
TOTAL : 45 HOURS						

The students will be able to

- Select compatible materials for minimizing friction and wear in machinery.
- Design or choose efficient tribological systems such as rolling element bearings, hydrodynamic bearings, and dry sliding bearings, for the needs of a specific application.
- Design bearings under Hydrostatic condition.
- Explain the concepts advanced bearings like porous bearings and gas lubricated bearings.
- Performs space and automotive tribology related study.

TEXT BOOKS:

- 1. Majumdar.B.C, "Introduction to Tribology of Bearing", Wheeler Publishing, New Delhi, 2001.
- 2. Radzimovsky, "Lubrication of Bearings Theoretical Principles and Design", Oxford Press Company, 2000.

- 1. Dudley D.Fulier, "Theory and Practice of Lubrication for Engineers", New York Company, 1998
- 2. Moore "Principles and Applications of Tribology", Pergamon Press, 1975.
- 3. Oscar Pinkus, BenoSternlicht, "Theory of Hydrodynamic Lubrication", McGraw-Hill, 1961.
- 4. G W Stachowiak, A W Batchelor, "Engineering Tribology", Elsevier Publication 1993.
- 5. F. M. Stansfield, "Hydrostatic Bearings for Machine Tools and Similar Applications", Machinery Publishing, 1970.

222EDT02	VIBRATION ANALYSIS AND CONTROL	L	Т	Р	С
222ED102	VIBRATION ANALISIS AND CONTROL	3	1	0	4
OBJECTIV	ES:				
1. To fu	illy understand and appreciate the importance of vibr	ation	s in	mecl	nanica
v	n of machine parts that operates in vibratory conditions.				
2. To ob	tain linear vibratory models of dynamic systems with c	hang	ing co	ompl	exitie
(SDC	F, MDOF).				
3. To w	rite the differential equation of motion of vibratory syste	ms.			
4. To m	ake free and forced (harmonic, periodic, non-periodic)	vibr	ation	anal	ysis c
single	e and multi degree of freedom linear systems.				
5. To ur	derstand working principles of vibration measurement of	levic	es.		
UNIT I FUN	NDAMENTALS OF VIBRATION			1	2
Introduction	-Sources Of Vibration-Mathematical Models- Displace	ceme	nt, ve	eloci	ty an
Acceleration	Review Of Single Degree Freedom Systems -Vibration	isola	tion V	<i>ibro</i>	meter
and acceleror	meters - Response To Arbitrary and non- harmonic Ex	citat	ions -	– Tra	ansier
Vibration -In	npulse loads- Critical Speed Of Shaft-Rotor systems.				
UNIT II TW	O DEGREE FREEDOM SYSTEM			1	2
Introduction-	Free Vibration Of Undamped And Damped - Forced Vib	ratio	n Witl	h Hai	rmoni
Excitation Sy	stem - Coordinate Couplings And Principal Coordinates				
UNIT III MUL	TI-DEGREE FREEDOM SYSTEM AND CONTINUOUS SYS	TEM		1	2
Multi Degre	e Freedom System -Influence Coefficients and s	tiffne	ess c	oeffi	cients
Flexibility M	atrix and Stiffness Matrix – Eigen Values and Eigen Ve	ctors	-Matr	ix It	eratio
Method -Ap	proximate Methods: Dunkerley, Rayleigh's, and Hol	zer]	Metho	od -(Geare
Systems-Eige	en Values & Eigen vectors for large system of equati	ons	using	sub	space
Lanczos meth	nod - Continuous System: Vibration of String, Shafts and	d Bea	ams		
UNIT IV VI	BRATION CONTROL			1	2
-	of Vibration Limits -Vibration severity standards- V				
Monitoring to	ool-Vibration Isolation methodsDynamic Vibration At	sorb	er, To	orsio	nal an
•	pe Absorber- Damped Vibration absorbers-Static and	-			-
Balancing ma	achines-Field balancing – Vibration Control by Design M	/lodi	ficatio	on	Activ
Vibration Co					
	PERIMENTAL METHODS IN VIBRATION ANAI			1	
	alysis Overview - Experimental Methods in Vibration		•		
-	nstruments - Selection of Sensors- Accelerometer M		-		
	hanical, Hydraulic, Electromagnetic And Electrody				
-	nstruments System Identification from Frequency R	espo	nse -'	Testi	ng fo
resonance and	d mode shapes				
	,	ГОТ	AL:6	50 H	OURS
COURSE OU					
	vill have an ability to				
•	zze the mathematical model of a linear vibratory sys	tem	to de	term	ine it
respon Obtai		atom			
	n linear mathematical models of real life engineering sys				
	agrange's equations for linear and nonlinear vibratory s	-		• -	
• Determine vibratory responses of SDOF and MDOF systems to harmonic, periodic					

and non-periodic excitation.Conduct test by using different vibration measuring device.

- 1. Rao, S.S.," Mechanical Vibrations," Prentice Hall, 2011.
- 2. Ramamurti. V, "Mechanical Vibration Practice with Basic Theory", Narosa, New Delhi, 2000.

- 1. V. P. Singh, "Mechanical Vibrations Mechanical Engineering; a Modern Approach", Dhanpat Rai Publication, 2009.
- 2. S. Graham Kelly & Shashidar K. Kudari, "Mechanical Vibrations", Tata McGraw Hill Publishing Com. Ltd New Delhi, 2007.
- 3. S Graham Kelly, "Schaum's Outline of Mechanical Vibrations", McGraw Hill Education, 1996.
- 4. Thomson, W.T., "Theory of Vibration with Applications", CBS Publishers and Distributors, New Delhi, 1990.

222EDT03	A DV A NCED MECHA NISMS IN DESIGN	L	Т	Р	С
222ED105	ADVANCED MECHANISMS IN DESIGN	3	1	0	4
OBJECTIV	ES:				
1. To learn the concepts of gross motion capability and develop multi loop kinematic					
chains a	nd equivalent mechanisms				
2. To study	complex mechanisms to determine velocity and acceleration	atior	n of or	utput	t links.
3. To learn	to locate inflection points and to draw the inflection circ	le.			
	the synthesis of planar mechanisms.				
	to design of six bar coupler driven mechanisms and cam	ı me	chanis	sms.	
UNIT I INTR				12	
	damentals of kinematics-classifications of mechanisms-comp				
•	ysis – formation of one D.O.F. multi loop kinematic chains, Ne				
	sts-Basic kinematic structures of serial and parallel robot m	anip	ulators	s-Coi	npliant
	Equivalent mechanisms.			10	
	EMATIC ANALYSIS	A a1	idar ar	12 onk	
	sis – Vector loop equations for four bar, slider crank, inverte x bar linkages. Analytical methods for velocity and acceleration				
	analysis. Plane complex mechanisms-auxiliary point me				
	enavit-Hartenberg Parameters – Forward and inverse				
manipulators.					10000
	TH CURVATURE THEORY, COUPLER CURVE			12	2
	ing centrodes, inflection points and inflection circle. Euler Sav	ary e	quatio	n, gr	aphical
constructions -	- cubic of stationary curvature. Four bar coupler curve-cusp -cr	unoc	le - co	upler	driven
six-bar mechan	nisms-straight line mechanisms				
	VTHESIS OF FOUR BAR MECHANISMS			12	
	s - Number synthesis - Associated Linkage Concept. Dir				
	ration, path generation, motion generation. Graphical me				
	nique-point position reduction-two, three and four position	•	hesis (ot to	ur- bar
	Analytical methods- Freudenstein's Equation-Bloch's Synthesi NTHESIS OF COUPLER CURVE BASED MECH			0	CAM
MECHANISM		AN	121/12	a 12	CAM 2
Cognate Linga	ges-parallel motion Linkages. Design of six bar mechanism	ıs-si	ngle d	well-	double
dwell-double s	troke. Geared five bar mechanism-multi-dwell. Cam Mechan	isms	- deter	mina	ation of
·	of cams. Mechanism defects. Study and use of Mechanism usir	•		on so	oftware
packages. Stud	lents should design and fabricate a mechanism model as term	proje	ect.		
	Т	ΌΤ	AL : 6	0 H (DURS
COURSE OU					
The student w	vill have an ability to				
	oncepts of gross motion capability and develop multi loop nt mechanisms.	kine	ematic	chai	ns and
-	e velocity and acceleration of complex mechanisms.				
	inflection points and draw the inflection circle.				
	se planar mechanisms.				
D :					

• Design of six bar coupler driven mechanisms and cam mechanisms.

- 1. Uicker, J.J., Pennock, G. R. and Shigley, J.E., "Theory of Machines and Mechanisms", Oxford University Press, 2017.
- 2. Robert L.Norton., "Design of Machinery", Tata McGraw Hill, 2012

- 1. Kenneth J, Waldron, Gary L. Kinzel, "Kinematics, Dynamics and Design of Machinery", John Wiley-sons, 2016.
- 2. Amitabha Ghosh and Asok Kumar Mallik, "Theory of Mechanism and Machines", EWLP, Delhi,1999.
- 3. Sandor G.N., and Erdman A.G., "Advanced Mechanism Design Analysis and Synthesis", Prentice Hall, 1984.

222EDP08	CAE LABORATORY	L	<u>T</u>	P	<u>C</u>
OBJECTIVE		0	0	2	1
1. To un	derstand and practice the drawings of machine compo- blies using modeling packages.	nen	its an	d sii	mpl
	ovide the fundamental concepts of the theory of the finite	e el	emen	t me	tho
	h software.				
3. To de	velop proficiency in the application of the finite element n	neth	nod (n	node	ling
analys	is, and interpretation of results) to realistic engineering pro	ble	ms thi	ougl	h th
use of	a major commercial general-purpose finite element code.				
4. To une	derstand the concepts of Structural and thermal stress analys	is o	n con	ipon	ents
5. To gai	n knowledge about the Failure analysis of various joints.				
Modeling an	nd Assembling of mechanical machine components	us	ing r	node	lin
software				15	
Modeling and	Assembling of Machine Vice, Tailstock, Connecting rod,	, Sh	aper t	tool	hea
assembly etc.					
5					
Analysis of n	nechanical machine components using analysis software	!		30	
•	s in Curved beam.				
	otched beam in four point bending.				
	smatic bar with rectangular cross section.				
	s Analysis of Circular Disc under diametrical compression.				
	aracteristics of a Spring Mass Damper System.				
-	nding and Modal analysis of stiffened Panels.				
0 1	nization problems (shape and weight optimization).				
	ss Analysis a thick walled cylinder filled with a fluid at high		-		
-	and Failure Analysis of welded joints, bolted joints and	ad	hesive	e boi	nde
joints.	<u>т</u> .	otal	l: 45 I		IDC
COURSE OU		Jia	1: 43 I	100	'NS
	will have ability to				
	and assemble the drawings of any mechanical product	s u	sing 1	mode	elin
	the method, meshing, analysis and optimize the real time element analysis software.	ie p	roble	ms u	ısin
	ate and interpret FEA analysis results for design and evalua	tior	ı purn	oses	
• Devel	op a basic understanding of the limitations of the FE method				
uie po	ssible error sources in its use.				

• Use analysis software for the application and use of the FE method for heat transfer and structural problems.

222EDE01	DESIGN OF HYDRAULIC AND PNEUMATIC	L	T	P	C		
OBJECTIVES	SYSTEMS	3	0	0	3		
		and	n no11	moti	00.00		
1. To have knowledge on how to use and application of hydraulics and pneumatics as							
fluid power in Industry.							
	the various control valves and actuation systems.						
1	rehend the design concepts of hydraulic system for automa	tion	•				
	se the pneumatic circuit for energy efficiency.						
5. To study	installation, maintenance and special circuits.						
PREREQUISI	TE: Knowledge of Applied Hydraulics and Pneumatics is require	red.					
	YDRAULIC SYSTEMS AND HYDRAULIC ACTUATORS			9			
Hydraulic Powe	r Generators, Selection and specification of pumps, Pump charac	cteris	stics, l	Linea	ar and		
	s – selection, specification and characteristics.						
	FROL AND REGULATION ELEMENTS			9			
	tion and flow control valves - relief valves, non-return and safe	ty va	lves -	actu	ation		
systems.				0			
	RAULIC CIRCUITS		•,	9	. • 1		
	quick return, sequencing, synchronizing circuits, accumulator						
·	rcuits, hydraulic milling machine, grinding, planning, copying,	IOTK	int, ea	rtn n	nover		
	and selection of components, safety and emergency mandrels. UMATIC SYSTEMS AND CIRCUITS			10			
	amentals, control elements, position and pressure sensing, logi	c cir	cuits		ching		
	conditions modules and these integration - sequential circuits						
	ds - step counter method - compound circuit design - combination						
	ALLATION, MAINTENANCE AND SPECIAL CIRCUITS			8	,		
	pments, selection of components, design calculations, applica	tion	-fault	finc	ling -		
hydro pneumat	ic circuits, use of microprocessors for sequencing, PLC, Low	v co	st aut	omat	tion -		
Robotic circuits							
		OTA	AL :4	5 H	ours		
COURSE OUT	TCOMES:						
• The studen	ts will have fundamental knowledge on fluid power control	ol.					
• The studen	ts will be able to select various control valves and use the	n in	hydr	aulic	c and		
pneumatic	circuit development.						
• The studen	ts will be able to design hydraulic circuits for automation.						
	ts will be able to analyse the pneumatic circuit for energy	effic	iency	<i>.</i>			
	ts know installation, maintenance of power systems.		2				
TEXT BOOKS							
	ossito, "Fluid Power with Applications", Prentice Hall, 7th Editi	on, 2	2016.				
• •	Pease and John J. Pippenger, "Basic fluid power", Prentice Hall,						
REFERENCE	BOOKS:						
U	T and Thammaiah Gowda, "Fluid Power: Generation, Transm	issio	n and	Con	trol",		
Wiley, 2016 2. Shanmuga	o. Sundaram K, "Hydraulic and Pneumatic controls: Understa	ndin	σma	de e	easy"		
•	Co. Book Publishers, New Delhi, 2009.		5 1110		y ,		
	r, "Hydraulics and Pneumatics" (HB), Jaico Publishing House,						
4. Majumdar S 28 th Edition	S R, "Oil Hydraulic Systems: Principles and Maintenance", McC, 2017.	braw	Hill I	Educa	ation,		
	"Pneumatic and Hydraulic Systems", Butterworth -Heinemann	100	98				
5. Bolton. W.,	r neumatic and rightaune Systems, Butterworth –nememanin	, 193	/0.				
	S R, "Pneumatic Systems: Principles and Maintenance", McG			Educa	ation,		

222EDE02	QUALITY CONCEPTS IN DESIGN	L 3	<u>Т</u> 0	P 0	<u>C</u> 3		
OBJECTIVE	Q.	3	U	U	3		
1. To impart knowledge on various concepts in engineering design, material selection							
and manufacturing methods.							
		~					
	arn the principles of implementing quality in a product	or	servio	es t	ising		
	ent tools.						
	hance the quality of product by use of failure mode ef	rec	ana at	lysis	and		
-	ment methods to uphold the status of six sigma.		0				
	evelop a robust product or service using various strateg	gies	s of c	lesig	n o		
-	iments.						
	aintain the quality of the product by use of statistical tools and	d ei	nforce	met	hods		
	prove the reliability of a product.						
	ITE: Knowledge of Manufacturing Technology - I is required.						
	GN FUNDAMENTALS, METHODS AND MATERIAL SEL						
Morphology of	of Design - The Design Process - Computer Aided Engineer	erin	g – C	Conci	ırren		
	Competition Bench Marking - Creativity - Theory of Problem						
	s - Design for Manufacture, Design for Assembly – Design for cast	ing	g, Forg	ing, l	Meta		
	hining and Welding.						
	IGN FOR QUALITY			9			
	on Deployment -House of Quality-Objectives and functions-Tar						
	Matrices-Design of Experiments -design process-Identification						
	and performance metrics - developing the experimental plan- exp				-		
-	actors- Running the experiments –Conducting the analysis-Select	ing	and co	ontor	ming		
	nts – reflecting and repeating.		aray				
	LURE MODE EFFECTS ANALYSIS AND DESIGN FOR S						
	s: Refining geometry and layout, general process of prod						
	hecklist-Advanced methods: systems modeling, mechanical emb						
	I- linking fault states to systems modeling – Basis of SIX SIGMA						
	A- SIX SIGMA problem solving- SIX SIGMA in service and sr nd lean production –Lean SIX SIGMA and services.	nai	i orga	nzau	ons		
	SIGN OF EXPERIMENTS			9			
	Experiments, Experimental Strategies, Basic principles of De	aia	n Tor	-	logu		
	ps in Experimentation, Sample size, Single Factor experime						
	esign, Randomized Block design, Statistical Analysis, Multifactor				•		
	or full Factorial experiments, 2K factorial Experiments, Confour		.				
designs, Fractional factorial design, Taguchi's approach - Steps in experimentation, Design using							
Orthogonal Arrays, Data Analysis, Robust Design- Control and Noise factors, S/N ratios							
	TISTICAL CONSIDERATION AND RELIABILITY			9			
	tributions and Histograms- Run charts –stem and leaf plots- Pare	to (diagra	ns- (Cause		
and Effect diagrams-Box plots- Probability distribution-Statistical Process control– Scatter							
diagrams –Multivariable charts –Matrix plots and 3-D plotsReliability-Survival and Failure-Series							
	stems-Mean time between failure-Weibull distribution.						
		от	AL:4	15 H4	ours		

The students will be able to

- Apply fundamentals of design process and material selection for developing a quality product.
- Apply the quality concepts to develop a robust product.
- Perform Failure Mode Effect Analysis on a product and use six sigma principles to enhance its quality.
- Apply different experimental design methods in product development.
- Implement various statistical tools to improve its quality and reliability.

TEXT BOOKS:

- 1. Karl T. Ulrich, Steven D. Eppinger, "Product Design and Development", Tata McGraw-Hill Education, 2015.
- 2. George E.Dieter, Linda C.Schmidt, "Engineering Design", McGraw Hill Education Pvt. Ltd., 2013.

- 1. Montgomery, D.C, "Design and Analysis of Experiments", John Wiley and Sons, 2017.
- 2. Amitava Mitra, "Fundamentals of Quality Control and Improvement", John Wiley & Sons, 2016.
- 3. Phillip J. Ross, "Taguchi Techniques for Quality Engineering", Tata McGraw Hill, 2005.
- 4. Kevin N. Otto and Kristin L. Wood, "Product Design: Techniques in Reverse Engineering and New Product Development", Prentice Hall, 2001.

222EDE03	DESIGN FOR SUSTAINABILITY	T 0	P 0	C 3			
OBJECTIVE		Ŭ	Ů	•			
1. To sel	ect the relevant process; applying the general design principles for n	nanuf	actura	bility;			
GD &	Т.						
2. To ap	ply the design considerations while designing the cast and welded c	ompo	onents				
3. To ap	ply the design considerations while designing the formed and mach	ined of	compo	onents.			
4. To ap	ply design considerations for assembled systems.						
5. To ap	ply design considerations for environmental issues.						
UNIT I INTE	ODUCTION		9				
Introduction -	Economics of process selection - General design principles for n	nanuf	actura	ability;			
	imensioning & Tolerance (GD&T)– Form tolerancing: straig						
circularity, cyl	indricity - Profile tolerancing: profile of a line, and surface - Orient	ation	tolera	ncing:			
angularity, per	pendicularity, parallelism – Location tolerancing: position, concen	tricit	y, syn	nmetry			
	ancing: circular and total-Supplementary symbols.						
UNIT II CAS	T & WELDED COMPONENTS DESIGN		9				
Design consid	erations for: Sand cast - Die cast - Permanent mold parts. Arc v	veldi	ng – I	Design			
considerations	for: Cost reduction - Minimizing distortion - Weld strength - Weld	lmen	. Resi	stance			
	gn considerations for: Spot-Seam-Projection-Flash & Upset weldn	nent					
	RMED & MACHINED COMPONENTS DESIGN		9				
	erations for: Metal extruded parts - Impact/Cold extruded parts -						
01	Design considerations for: Turned parts-Drilled parts - Milled, pla	nned	, shap	ed and			
slotted parts-							
	SIGN FOR ASSEMBLY		9				
	embly – General assembly recommendations – Minimizing the no.						
	for: Rivets - Screw fasteners - Gasket & Seals - Press fits - Snap	fits	– Auto	omatic			
	mputer Application for DFMA.						
	IGN FOR ENVIRONMENT		9				
	Environmental objectives-Global issues-Regional and local is						
methods-Design guide lines-Example application-Life cycle assessment-Basic method-AT&T's							
environmentally responsible product assessment-Weighted sum assessment method-Life cycle							
assessment method-Techniques to reduce environmental impact-Design to minimize material							
	for disassembly-Design for recyclability-Design for manufacture-	Desig	n for e	energy			
efficiency –De	esign to regulations and standards.						
	TO	ΓAL	: 45 H	lours			

Student will be able to

- Select relevant process; apply the general design principles for manufacturability; GD&T.
- Apply design considerations while designing the cast and welded components.
- Apply design considerations while designing the formed and machined components.
- Apply design considerations for assembled systems.
- Apply design considerations for environmental issues.

TEXT BOOKS:

- 1. Boothroyd, G, "Design for Assembly Automation and Product Design", New York, Marcel Dekker, 2nd Edition 2002.
- 2. Graedel T. Allen By B, "Design for the Environment", Angle Wood Cliff, Prentice Hall. Reason Pub., 1996.

- 1. Kevin Otto and Kristin Wood, "Product Design", Pearson Publication, (Fourth Impression) 2009.
- 2. Fixel, J. "Design for the Environment" McGraw Hill., 2nd Edition, 2009.
- 3. Bralla, "Design for Manufacture handbook", McGraw Hill, 1999.
- 4. Dickson, John.R, and Corroda Poly, "Engineering Design and Design for Manufacture and Structural Approach", Field Stone Publisher, USA,1995.
- 5. Boothroyd, G, Heartz and Nike, "Product Design for Manufacture", Marcel Dekker, 1994.
- 6. Harry Peck, "Designing for Manufacture", Pitman-1973.

OBJECTIVES: 3 0 0 3 ORJECTIVES: . To study different composite materials and finding its mechanical strength. 2. To fabricate FRP and other composites by different manufacturing methods. . . 3. To know about stress analysis of fiber reinforced laminates for different combinations of plies with different orientations of the fiber. . 4. To calculate stresses in the lamina of the laminate using different failure theories . . 5. To calculate stresses in different types of laminates under thermo-mechanical load using the Classical Laminate Theory. 9 Definition-Matrix materials-polymers-metals-ceramics - Reinforcements: Particles whiskers, inorganic fibers, metal filaments-ceramic fibers-fiber fabrication-natural composite wood, Jute-Advantages and drawbacks of composites over monolithic materials. Mechanical properties and applications of composites, Particulate-Reinforced composite Materials, Dispersion-Strengthened composite, Fiber-reinforced composites (MCS)-handlay-up, spray technique, filament winding, Pultrusion, Resin Transfer Moulding (RTM)-bag moulding, injection moulding, sandwich Mould Composites (SMC) - Manufacturing of Ceramic Matrix Composites (MCS) - Solid state, liquid state, vapour state processing. Manufacturing of Ceramic Matrix Composite Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotorpic Laminat – Isotropic limit case, Orthotoropic Stiffness matrix (Qij). Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminates, Angle Py Laminates. CrossPy Laminates. Liquid state, sequoti state mainates. Symmetric Laminates. Angle Py La	222EDE04	COMPOSITE MATERIALS AND MECHANICS		T	P	C			
 To study different composite materials and finding its mechanical strength. To fabricate FRP and other composites by different manufacturing methods. To know about stress analysis of fiber reinforced laminates for different combinations of plies with different orientations of the fiber. To calculate stresses in the lamina of the laminate using different failure theories To calculate residual stresses in different types of laminates under thermo-mechanical load using the Classical Laminate Theory. PREREQUISITE: Knowledge of Composite Materials is required. UNIT INTRODUCTION TO COMPOSITE MATERIALS 9 Definition-Matrix materials-polymers-metals-ceramics - Reinforcements: Particles, whiskers, inorganic fibers, metal filaments-ceramic fibers-fiber fabrication-natural composite wood, Jute-Advantages and drawbacks of composites over monolithic materials. Dispersion-Strengthened composite, Fiber-reinforced composites (PMCs)-handlay-up, spray technique, filament winding, Pultrusion, Resin Transfer Moulding (RTM)-bag moulding, injection moulding, Sandwich Mould Composites (SMC) - Manufacturing of Metal Matrix Composites (MMCs) - Solid state, liquid state, vapour state processing, Manufacturing of Metal Matrix Composites (MMCs) - Solid state, liquid state, vapour state processing, Manufacturing of Ceramic Matrix Composites (CMCs) - hot press ingreaction bonding process-infiltration technique, direct oxidation-interfaces UNIT II LAMINA CONSTITUTIVE EQUATIONS 9 Laminate Structural Moduli. Evaluation of Lamina Assumptions-Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthoripic Laminate. Surgital, Sai-Hill's Faluer Criterion for Composite state strain Displacement relations. Basic Assumptions of Laminates, Symmetric Laminates, Angle Ply Laminates, CrossPly Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminates, CossPly Laminates. <l< th=""><th></th><th>10</th><th>3</th><th>0</th><th>0</th><th>3</th></l<>		10	3	0	0	3			
 To fabricate FRP and other composites by different manufacturing methods. To know about stress analysis of fiber reinforced laminates for different combinations of plies with different orientations of the fiber. To calculate stresses in the lamina of the laminate using different failure theories To calculate residual stresses in different types of laminates under thermo-mechanical load using the Classical Laminate Theory. PREREQUISITE: Knowledge of Composite Materials is required. UNIT I INTRODUCTION TO COMPOSITE MATERIALS 9 Definition-Matrix materials-polymers-metals-ceramics i- Reinforcements: Particles, whiskers, inorganic fibers, metal filaments-ceramic fibers-fiber fabrication-natural composite wood, Jute-Advantages and drawbacks of composites over monolithic materials. Mechanical properties and applications of composites, Particulate-Reinforced composite Materials, Dispersion-Strengthened composite, Fiber-reinforced composites (PMCs)-handlay-up, spray technique, filament-vinding, Pultrusion, Resin Transfer Moulding (RTM)-bag moulding, injection moulding, Sandwich Mould Composites (SMC) - Manufacturing of Metal Matrix Composites (MMCS) - Solid state, liquid state, vapour state processing, Manufacturing of Metal Matrix Composites (MMCS) - Solid state, liquid to constitutive Equations: Lamina Assumptions-Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Laminates, Massumptions of Laminates, Assumptions - Karie Poly Laminates, Surger Poly Laminates, Surger Poly Laminates, ConsPty Laminates, Laminate Structural Moduli, Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates, Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Laminate, Strai Displacement relations, Basic Assumptions of Laminate anisotropic plates. Laminate Constitutive Equations I coupling Interactions, Balanced Laminates, Symmetric Laminates, A									
 To know about stress analysis of fiber reinforced laminates for different combinations of plies with different orientations of the fiber. To calculate stresses in the lamina of the laminate using different failure theories To calculate residual stresses in different types of laminates under thermo-mechanical load using the Classical Laminate Theory. PREREQUISITE: Knowledge of Composite Materials is required. UNIT I INTRODUCTION TO COMPOSITE MATERIALS Pefinition-Matrix materials-polymers-metals-ceramics - Reinforcements: Particles, whiskers, inorganic fibers, metal filaments-ceramic fibers-fiber fabrication-natural composite wood, Jute-Advantages and drawbacks of composites ore monolithic materials. Mcchanical properties and applications of composites, Particulate-Reinforced composite Materials, Dispersion-Strengthened composite, Fiber-reinforced composites (PMCs)-handlay-up, spray technique, filament winding, Pultrusion, Resin Transfer Moulding (RTM)-bag moulding, injection moulding, Sandwith Mould Composites (SMC) - Manufacturing of Metal Matrix Composites (MMCs) - Solid state, liquid state, vapour state processing, Manufacturing of Ceramic Matrix Composites (CMCs)-hot press ingreaction bonding process-infiltration technique, direct oxidation-interfaces UNIT II LAMINA CONSTITUTIVE EQUATIONS 9 Lamina Constitutive Equations: Lamina Assumptions–Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Laminate, Strain Displacement relations. Baic Assumptions of Laminate Resultants. Strain Displacement relations. Baic Assumptions of Laminate reses within Laminates. UNIT IV LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLAT PLATES Mort VITERONO-STRUCURAL ANALYSIS AND ANALYSIS OF LAMINATED FLAT PLATES Motification of Lamina tresses within Laminates. Materials, Generalized Hill's Criterion for Anisotropic materials, Tsai-Hill's Fail	•								
 with different orientations of the fiber. 4. To calculate stresses in the lamina of the laminate using different failure theories 5. To calculate stresses in different types of laminates under thermo-mechanical load using the Classical Laminate Theory. PREREQUISITE: Knowledge of Composite Materials is required. UNIT I INTRODUCTION TO COMPOSITE MATERIALS 9 Definition-Matrix materials-polymers-metals-ceramics - Reinforcements: Particles, whiskers, inorganic fibers, metal filaments-ceramic fibers-fiber fabrication-natural composite wood, Jute-Advantages and drawbacks of composites over monolithic materials. Dispersion-Strengthened composite, Particulate-Reinforced composite Materials, Dispersion-Strengthened composites, Particulate-Reinforced composite Materials, Dispersion-Strengthened composites, Manufacturing fiber and composites UNIT II MANUFACTURING OF COMPOSITES 9 Manufacturing of Polymer Matrix Composites (PMCs)-handlay-up, spray technique, filament winding, Pultrusion, Resin Transfer Moulding (RTM)-bag moulding, injection moulding, Sandwich Mould Composites (SMC) - Manufacturing of Ceramic Matrix Composites (CMCs)- hot press ingreaction bonding process-infiltration technique, direct oxidation-interfaces UNIT II LAMINA CONSTITUTIVE EQUATIONS 9 Amina Constitutive Equations: Lamina Assumptions–Macroscopic Viewpoint Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Laminate Constitutive Equations. Laminates, Angle Ply Laminates, CrossPly Laminates, Laminate Structural Moduli. Evaluation of Laminate Constitutive Equations of Laminated anisotropic plates. Laminate Constitutive Equations of Laminates and strain Criteria. Von-Misses Yield criterion for Isotropic Composites. Tensor Polynomial (Tsai-Wu) Failure criterion, Prediction of Laminates anisotropic plates. Laminate Constitutive Equations of Laminates and Strain Criteria. Von-Miss									
 4. To calculate stresses in the lamina of the laminate using different failure theories 5. To calculate residual stresses in different types of laminates under thermo-mechanical load using the Classical Laminate Theory. PREREQUISITE: Knowledge of Composite Materials is required. UNIT I INTRODUCTION TO COMPOSITE MATERIALS 9 Definition-Matrix materials-polymers-metals-ceramics - Reinforcements: Particles, whiskers, inorganic fibers, metal filaments-ceramic fibers-fiber fabrication-natural composite wood, Jute-Advantages and drawbacks of composites over monolithic materials. Mechanical properties and applications of composites, Particulate-Reinforced composite Materials, Dispersion-Strengthened composites, Manufacturing fiber and composites UNIT II MANUFACTURING OF COMPOSITES 9 Manufacturing of Polymer Matrix Composites (PMCs)-handlay-up, spray technique, filament winding, Pultrusion, Resin Transfer Moulding (RTM)-bag moulding, injection moulding, Sandwich Mould Composites (SMC) - Manufacturing of Ceramic Matrix Composites (MMCs) - Solid state, liquid state, vapour state processing, Manufacturing of Ceramic Matrix Composites (CMCs)-hot press ingreaction bonding process-infiltration technique, direct oxidation-interfaces UNIT II LAMINA CONSTITUTIVE EQUATIONS 9 Lamina Constitutive Equations: Lamina Assumptions-Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Stiffness matrix (Qi), Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminates, Symmetric Laminates, Angle Ply Laminates, CrossPly Laminates. Laminates. Determination of Lamina tresses within Laminates. UNIT IV LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLAT PLATES 9 Fabrication Moduli. Evaluation of Laminates. Malanysis. Free Vibrations - Natural Frequencies UN		•	omł	oinatio	ns of	plies			
 5. To calculate residual stresses in different types of laminates under thermo-mechanical load using the Classical Laminate Theory. PREREQUISITE: Knowledge of Composite Materials is required. UNIT I INTRODUCTION TO COMPOSITE MATERIALS 9 Definition-Matrix materials-polymers-metals-ceramics - Reinforcements: Particles, whiskers, inorganic fibers, metal filaments-ceramic fibers-fiber fabrication-natural composite wood, Jute-Advantages and drawbacks of composites over monolithic materials. Mechanical properties and applications of composites, Particulate-Reinforced composite Materials, Dispersion-Strengthened composite, Simanfacturing fiber and composites UNIT II MANUFACTURING OF COMPOSITES 9 Manufacturing of Polymer Matrix Composites (PMCs)-handlay-up, spray technique, filament winding, Pultrusion, Resin Transfer Moulding (RTM)-bag moulding, injection moulding, Sandwich Mould Composites (SMC) - Manufacturing of Ceramic Matrix Composites (MMCs) - Solid state, liquid state, vapour state processing, Manufacturing of Ceramic Matrix Composites (MMCs) - Solid state, liquid state, vapour state processing, Manufacturing of Ceramic Matrix Composites (CMCs)—hot press ingreaction bonding process-infiltration technique, direct oxidation-interfaces UNIT II LAMINA CONSTITUTIVE EQUATIONS 9 Lamina Constitutive Equations: Lamina Assumptions-Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Laminate Constitutive Equations – Coupling Interactions, Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, CrossPly Laminates, Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Materials, Generalized Hill's Criterion for Anisotropic materials, Tsai-Hill's Failure Criterion for Composites. Testers and Manufacturing of Ceramic Astive Equations – Coupling Interaction. Maximum Stress and Strain Criteria. Von-Misses Y									
using the Classical Laminate Theory. PREREQUISTIE: Knowledge of Composite Materials is required. UNIT I INTRODUCTION TO COMPOSITE MATERIALS 9 Definition-Matrix materials-ceramic fibers-fiber fabrication-natural composite wood, Jute-Advantages and drawbacks of composites over monolithic materials. Mechanical properties and applications of composites, Particulate-Reinforced composite Materials, Dispersion-Strengthened composite, Fiber-reinforced composites Rule of mixtures-Characteristics of fiber-Reinforced composites, Manufacturing fiber and composites 9 Manufacturing fiber and composites Muntificaturing of Polymer Matrix Composites (PMCs)-handlay-up, spray technique, filament winding, Pultrusion, Resin Transfer Moulding (RTM)-bag moulding, injection moulding, Sandwich Mould Composites (SMC) - Manufacturing of Metal Matrix Composites (MMCs) - Solid state, liquid state, vapour state processing, Manufacturing of Metal Matrix Composites (MMCs) - Solid state, liquid state, vapour state processing, Manufacturing of Cramic Matrix Composites (CMCs) - hot press ingreaction bonding process-infiltration technique, direct oxidation-interfaces 9 UNIT II LAMINA CONSTITUTIVE EQUATIONS 9 Lamina Constitutive Equations of Lamina Assumptions-Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Laminate, Strain Displacement relations. Basic Assumptions of Laminates, Argle Ply Laminates, CrossPly Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminates, CrossPly Laminates. Matrin Constitutive Equation of Laminate, Angle		•							
PREREQUISITE: Knowledge of Composite Materials is required. UNIT I INTRODUCTION TO COMPOSITE MATERIALS Pefinition-Matrix materials-polymers-metals-ceramics - Reinforcements: Particles, whiskers, inorganic fibers, metal filaments-ceramic fibers-fiber fabrication-natural composite wood, Jute-Advantages and drawbacks of composites over monolithic materials. Mechanical properties and applications of composites, Particulate-Reinforced composite Materials, Dispersion-Strengthened composite, Manufacturing fiber and composites UNIT II MANUFACTURING OF COMPOSITES 9 Manufacturing fiber and composites (PMCs)-handlay-up, spray technique, filament winding, Pultrusion, Resin Transfer Moulding (RTM)-bag moulding, injection moulding, Sandwich Mould Composites (SMC) - Manufacturing of Ceramic Matrix Composites (CMCs) - hot press ingreaction bonding process-infiltration technique, direct oxidation-interfaces UNIT II LAMINA CONSTITUTIVE EQUATIONS 9 Lamina Constitutive Equations: Lamina Assumptions-Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Stiffness matrix (Qij), Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminates, Symmetric Laminates, Angle Ply Laminates, CrossPly Laminates. Luminate Structural Moduli, Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Materials, Generalized Hill's Criterion for Anisotropic materials, Trainet Constitutive Equations - Coupling Introduction - Maximum		3 1	mo-	mecha	nical	load			
UNIT I INTRODUCTION TO COMPOSITE MATERIALS 9 Definition-Matrix materials-polymers-metals-ceramics - Reinforcements: Particles, whiskers, inorganic fibers, metal filaments-ceramic fibers-fiber fabrication-natural composite wood, Jute-Advantages and drawbacks of composites over monolithic materials. Mechanical properties and applications of composites, Particulate-Reinforced composite Materials, Dispersion-Strengthened composite, Fiber-reinforced composites Rule of mixtures-Characteristics of fiber-Reinforced composites, Manufacturing fiber and composites 9 UNIT II MANUFACTURING OF COMPOSITES 9 Manufacturing of Polymer Matrix Composites (PMCs)-handlay-up, spray technique, filament winding, Pultrusion, Resin Transfer Moulding (RTM)-bag moulding, injection moulding, Sandwich Mould Composites (SMC) - Manufacturing of Metal Matrix Composites (MMCs) - Solid state, liquid state, vapour state processing, Manufacturing of Ceramic Matrix Composites (CMCs)-hot press ingreaction bonding process-infiltration technique, direct oxidation-interfaces 9 UNIT III LAMINA CONSTITUTIVE EQUATIONS 9 Lamina Constitutive Equations: Lamina Assumptions-Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Stiffness matrix (Qij), Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminates, Symmetric Laminates, Angle Ply Laminates, CrossPly Laminates. Laminates. Determination of Lamina tersses within Laminates. 9 UNIT III LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLAT PLATES 9 Manterials, Generalized Hill's Criterion for Anisotropic materials, Tsai	U U	•							
Definition-Matrix materials-polymers-metals-ceramics - Reinforcements: Particles, whiskers, inorganic fibers, metal filaments-ceramic fibers-fiber fabrication-natural composite wood, Jute- Advantages and drawbacks of composites over monolithic materials. Mechanical properties and applications of composites, Particulate-Reinforced composite Materials, Dispersion-Strengthened composite, Fiber-reinforced composites Rule of mixtures-Characteristics of fiber-Reinforced composites, Manufacturing fiber and composites UNIT II MANUFACTURING OF COMPOSITES 9 Manufacturing of Polymer Matrix Composites (PMCs)-handlay-up, spray technique, filament winding, Pultrusion, Resin Transfer Moulding (RTM)-bag moulding, injection moulding, Sandwich Mould Composites (SMC) - Manufacturing of Metal Matrix Composites (MMCs) - Solid state, liquid state, vapour state processing, Manufacturing of Ceramic Matrix Composites (CMCs)-hot press ingreaction bonding process-infiltration technique, direct oxidation-interfaces UNIT III LAMINA CONSTITUTIVE EQUATIONS 9 Lamina Constitutive Equations: Lamina Assumptions-Macroscopic Viewpoint, Generalized Hooke's Law. Reduction to Homogeneous Orthorpic Lamina – Isotorpic limit case, Orthotropic Stiffness matrix (Qij), Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminate anisotropic plates. Laminate Constitutive Equations – Coupling Interactions, Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, CrossPly Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Materials, Generalized Hill's Criterion for Anisotropic materials, Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion, Prediction of Iaminate Failure Equilibrium Equations of Motion. Energy Formulations, Static Bending Analysis. Buckling Analysis. Free Vibrations- Natural Frequencies UNIT VTHERMO-STRUCURAL ANALYSIS 9 Fabrication stresses / Residual stresses in FRP laminated composites co-efficient									
inorganic fibers, metal filaments-ceramic fibers-fiber fabrication-natural composite wood, Jute- Advantages and drawbacks of composites over monolithic materials. Mechanical properties and applications of composites, Particulate-Reinforced composite Materials, Dispersion-Strengthened composite, Fiber-reinforced composites Rule of mixtures-Characteristics of fiber-Reinforced composites, Manufacturing fiber and composites (PMCs)-handlay-up, spray technique, filament winding, Pultrusion, Resin Transfer Moulding (RTM)-bag moulding, injection moulding, Sandwich Mould Composites (SMC) - Manufacturing of Metal Matrix Composites (MMCs) - Solid state, liquid state, vapour state processing, Manufacturing of Ceramic Matrix Composites (CMCs)-hot press ingreaction bonding process-infiltration technique, direct oxidation-interfaces UNTI III LAMINA CONSTITUTIVE EQUATIONS 9 Lamina Constitutive Equations: Lamina Assumptions–Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Stiffness matrix (Qij), Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminated anisotropic plates. Laminate Constitutive Equations – Coupling Interactions, Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, CrossPly Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates. UNIT IV LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLAT PLATES 9 Introduction- Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials, Generalized Hill's Criterion for Anisotropic materials, Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion, Prediction of laminate Failure Equilibrium Equations of Motion. Energy Formulations, Static Bending Analysis. Buckling Analysis. Free Vibrations–Natural Frequencies UNIT V THERMO-STRUCURAL ANALYSIS 9 Fabrication s					-				
Advantages and drawbacks of composites over monolithic materials. Mechanical properties and applications of composites, Particulate-Reinforced composite Materials, Dispersion-Strengthened composite, Fiber-reinforced composites Rule of mixtures-Characteristics of fiber-Reinforced composites, Manufacturing fiber and composites UNIT II MANUFACTURING OF COMPOSITES 9 Manufacturing of Polymer Matrix Composites (PMCs)-handlay-up, spray technique, filament winding, Pultrusion, Resin Transfer Moulding (RTM)-bag moulding, injection moulding, Sandwich Mould Composites (SMC) - Manufacturing of Metal Matrix Composites (MMCs) - Solid state, liquid state, vapour state processing, Manufacturing of Ceramic Matrix Composites (CMCs) - hot press ingreaction bonding process-infiltration technique, direct oxidation-interfaces UNIT III LAMINA CONSTITUTIVE EQUATIONS 9 Lamina Constitutive Equations: Lamina Assumptions–Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Stiffness matrix (Qij), Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminate anisotropic plates. Laminate Constitutive Equations – Coupling Interactions, Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, CrossPly Laminates. Laminates Structural Moduli. Evaluation of Lamina Properties from Laminate, CrossPly Laminates. UNIT IV LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLAT PLATES 9 Introduction- Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Camposites. Tensor Polynomial (Tsai-Wu) Failure criterion, Prediction of laminate Failure Equilibrium Equations – Matural Frequencies UNIT THERMO-STRUCCURA LANALYSIS PS 9 Fabrication stresses / Residual stresses in FRP laminated composites. Co-efficient of Thermal Expansion (C.T.E.) - Modification of Hooke's Law, Modification of Laminates during fabrication-Calculations for thermo-mechanical stresses in FRP laminates. Constitutive Equations of thermal Expansi									
applications of composites, Particulate-Reinforced composite Materials, Dispersion-Strengthened composite, Fiber-reinforced composites Rule of mixtures-Characteristics of fiber-Reinforced composites, Manufacturing fiber and composites UNT II MANUFACTURING OF COMPOSITES 9 Manufacturing of Polymer Matrix Composites (PMCs)-handlay-up, spray technique, filament winding, Pultrusion, Resin Transfer Moulding (RTM)-bag moulding, injection moulding, Sandwich Mould Composites (SMC) - Manufacturing of Metal Matrix Composites (MMCs) - Solid state, liquid state, vapour state processing, Manufacturing of Ceramic Matrix Composites (CMCs) - hot press ingreaction bonding process-infiltration technique, direct oxidation-interfaces UNIT III LAMINA CONSTITUTIVE EQUATIONS 9 Lamina Constitutive Equations: Lamina Assumptions-Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Stiffness matrix (Qij), Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminates, Symmetric Laminates, Angle Ply Laminates, CrossPly Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates. UNIT IV LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLAT PLATES 9 Introduction- Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials, Generalized Hill's Criterion for Anisotropic materials, Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion, Prediction of laminate Failure Equilibrium Equations of Motion. Energy Formulations, Static Bending Analysis. Buckling Analysis. Free VibrationsNatural Frequencies UNIT V THERMO-STRUCURAL ANALYSIS 9 Fabrication stresses / Residual stresses in FRP laminated composites-Co-efficient of Thermal Expansion (C.T.E.) - Modification of Hooke's Law, Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's -Stress									
composite, Fiber-reinforced composites Rule of mixtures-Characteristics of fiber-Reinforced composites, Manufacturing fiber and composites 9 UNIT II MANUFACTURING OF COMPOSITES 9 Manufacturing of Polymer Matrix Composites (PMCs)-handlay-up, spray technique, filament winding, Pultrusion, Resin Transfer Moulding (RTM)-bag moulding, injection moulding, Sandwich Mould Composites (SMC) - Manufacturing of Metal Matrix Composites (MMCs) - Solid state, liquid state, vapour state processing, Manufacturing of Ceramic Matrix Composites (CMCs)-hot press ingreaction bonding process-infiltration technique, direct oxidation-interfaces UNIT III LAMINA CONSTITUTIVE EQUATIONS 9 Lamina Constitutive Equations: Lamina Assumptions-Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Stiffness matrix (Qij), Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminates, Symmetric Laminates, Angle Ply Laminates, CoussPly Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates. UNIT IV LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLAT PLATES 9 Introduction- Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials, Generalized Hill's Criterion for Anisotropic materials, Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion, Prediction of Laminate Failure Equilibrium Equations - Natural Frequencies 9 Introduction- Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Thermal Expansion (C.									
composites, Manufacturing fiber and composites 9 Manufacturing of Polymer Matrix Composites (PMCs)-handlay-up, spray technique, filament winding, Pultrusion, Resin Transfer Moulding (RTM)-bag moulding, injection moulding, Sandwich Mould Composites (SMC) - Manufacturing of Metal Matrix Composites ((MMCs) - Solid state, liquid state, vapour state processing, Manufacturing of Ceramic Matrix Composites (CMCs) - hot press ingreaction bonding process-infiltration technique, direct oxidation-interfaces 9 UNIT III LAMINA CONSTITUTIVE EQUATIONS 9 Lamina Constitutive Equations: Lamina Assumptions–Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Stiffness matrix (Qij), Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminated anisotropic plates. Laminate Constitutive Equations – Coupling Interactions, Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, CrossPly Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates. UNIT IV LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLAT PLATES 9 Introduction- Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials, Generalized Hill's Criterion for Anisotropic materials, Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion, Prediction of laminate Failure Equilibrium Equations of Motion. Energy Formulations, Static Bending Analysis. Buckling Analysis. Free Vibrations– Natural Frequencies 9									
UNIT II MANUFACTURING OF COMPOSITES 9 Manufacturing of Polymer Matrix Composites (PMCs)-handlay-up, spray technique, filament winding, Pultrusion, Resin Transfer Moulding (RTM)-bag moulding, injection moulding, Sandwich Mould Composites (SMC) - Manufacturing of Metal Matrix Composites (MMCs) - Solid state, liquid state, vapour state processing, Manufacturing of Ceramic Matrix Composites (CMCs)-hot press ingreaction bonding process-infiltration technique, direct oxidation-interfaces UNIT III LAMINA CONSTITUTIVE EQUATIONS 9 Lamina Constitutive Equations: Lamina Assumptions–Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Stiffness matrix (Qij), Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminated anisotropic plates. Laminate Constitutive Equations – Coupling Interactions, Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, CrossPly Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates. UNIT IV LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLAT PLATES 9 Introduction- Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials, Generalized Hill's Criterion for Anisotropic materials, Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion, Prediction of laminate Failure Equilibrium Equations of Motion. Energy Formulations, Static Bending Analysis. Buckling Analysis. Free Vibrations– Natural Frequencies 9 UNIT V THERMO-STRUCURAL ANALYSIS 9 Fabrication resses /	·	A	of	fiber-F	Reinf	orced			
Manufacturing of Polymer Matrix Composites (PMCs)-handlay-up, spray technique, filament winding, Pultrusion, Resin Transfer Moulding (RTM)-bag moulding, injection moulding, Sandwich Mould Composites (SMC) - Manufacturing of Metal Matrix Composites (MMCs) - Solid state, liquid state, vapour state processing, Manufacturing of Ceramic Matrix Composites (CMCs)-hot press ingreaction bonding process-infiltration technique, direct oxidation-interfaces UNT III LAMINA CONSTITUTIVE EQUATIONS 9 Lamina Constitutive Equations: Lamina Assumptions-Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Stiffness matrix (Qij), Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminated anisotropic plates. Laminate Constitutive Equations - Coupling Interactions, Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, CrossPly Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate, CrossPly Laminates. UNIT IV LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLAT PLATES 9 Introduction- Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials, Generalized Hill's Criterion for Anisotropic materials, Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion, Prediction of laminate Failure Equilibrium Equations of Motion. Energy Formulations, Static Bending Analysis. Buckling Analysis. Free Vibrations- Natural Frequencies UNT V THERMO-STRUCURAL ANALYSIS 9 Fabrication stresses / Residual stresses in FRP laminated composites-Co-efficient of Thermal Expansion (C.T.E.) - Modification of Hooke's Law, Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's -Stress and Moment Resultants due cooling of the laminates during fabrication-Calculations for thermo-mechanical stresses in FRP laminates. Case studies: Implementation of CLT for evaluating residual stresses in the components made with different isotr									
 winding, Pultrusion, Resin Transfer Moulding (RTM)-bag moulding, injection moulding, Sandwich Mould Composites (SMC) - Manufacturing of Metal Matrix Composites (MMCs) - Solid state, liquid state, vapour state processing, Manufacturing of Ceramic Matrix Composites (CMCs) – hot press ingreaction bonding process-infiltration technique, direct oxidation-interfaces UNIT III LAMINA CONSTITUTIVE EQUATIONS 9 Lamina Constitutive Equations: Lamina Assumptions–Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Stiffness matrix (Qij), Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminated anisotropic plates. Laminate Constitutive Equations – Coupling Interactions, Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, CrossPly Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates. UNIT IV LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLAT PLATES 9 Introduction- Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials, Generalized Hill's Criterion for Anisotropic materials, Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion, Prediction of laminate Failure Equilibrium Equations of Motion. Energy Formulations, Static Bending Analysis. Buckling Analysis. Free Vibrations– Natural Frequencies UNIT V THERMO-STRUCURAL ANALYSIS 9 Fabrication stresses / Residual stresses in FRP laminated composites-Co-efficient of Thermal Expansion (C.T.E.) - Modification of Hooke's Law, Modification of Laminate Constitutive Equations, Orthotropic Lamina of Hooke's Law, Modification of Laminate Constitutive Equations. Crase studies: Implementation of CLT for evaluating residual stresses in the componen					-				
Mould Composites (SMC) - Manufacturing of Metal Matrix Composites (MMCs) - Solid state, liquid state, vapour state processing, Manufacturing of Ceramic Matrix Composites (CMCs) - hot press ingreaction bonding process-infiltration technique, direct oxidation-interfaces UNT III LAMINA CONSTITUTIVE EQUATIONS 9 Lamina Constitutive Equations: Lamina Assumptions–Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Stiffness matrix (Qij), Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminated anisotropic plates. Laminate Constitutive Equations – Coupling Interactions, Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, CrossPly Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates. UNTI VI LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLAT PLATES 9 Introduction- Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials, Generalized Hill's Criterion for Anisotropic materials, Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion, Prediction of laminate Failure Equilibrium Equations of Motion. Energy Formulations, Static Bending Analysis. Buckling Analysis. Free Vibrations– Natural Frequencies UNT V THERMO-STRUCURAL ANALYSIS 9 Fabrication stresses / Residual stresses in FRP laminated composites-Co-efficient of Thermal Expansion (C.T.E.) - Modification of Hooke's Law, Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's -Stress and Moment Resultants due cooling of the laminates during fabrication-Calculations for thermo-mechanical stresses in FRP laminates. Case studies: Implementation of CLT for evaluating residual stresses in the components made with different isotropic layers such as electronic packages etc.									
state, vapour state processing, Manufacturing of Ceramic Matrix Composites (CMCs)-hot press ingreaction bonding process-infiltration technique, direct oxidation-interfaces UNIT III LAMINA CONSTITUTIVE EQUATIONS 9 Lamina Constitutive Equations: Lamina Assumptions-Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Stiffness matrix (Qij), Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminated anisotropic plates. Laminate Constitutive Equations – Coupling Interactions, Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, CrossPly Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates. UNIT IV LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLAT PLATES 9 Introduction- Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials, Generalized Hill's Criterion for Anisotropic materials, Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion, Prediction of laminate Failure Equilibrium Equations of Motion. Energy Formulations, Static Bending Analysis. Buckling Analysis. Free Vibrations- Natural Frequencies UNIT V THERMO-STRUCURAL ANALYSIS 9 Fabrication stresses / Residual stresses in FRP laminated composites-Co-efficient of Thermal Expansion (C.T.E.) - Modification of Hooke's Law, Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's -Stress and Moment Resultants due cooling of the laminates during fabrication-Calculations for thermo-mechanical stresses in FRP laminates. Case studies: Implementation of CLT for evaluating residual stresses in the components made with different isotropic layers such as electronic packages etc.									
ingreaction bonding process-infiltration technique, direct oxidation-interfaces UNIT III LAMINA CONSTITUTIVE EQUATIONS 9 Lamina Constitutive Equations: Lamina Assumptions–Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Stiffness matrix (Qij), Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminated anisotropic plates. Laminate Constitutive Equations – Coupling Interactions, Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, CrossPly Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates. UNIT IV LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLAT PLATES 9 Introduction- Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials, Generalized Hill's Criterion for Anisotropic materials, Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion, Prediction of laminate Failure Equilibrium Equations of Motion. Energy Formulations, Static Bending Analysis. Buckling Analysis. Free Vibrations–Natural Frequencies UNIT V THERMO-STRUCURAL ANALYSIS 9 Fabrication stresses / Residual stresses in FRP laminated composites-Co-efficient of Thermal Expansion (C.T.E.) - Modification of Hooke's Law, Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's -Stress and Moment Resultants due cooling of the laminates during fabrication-Calculations for thermo-mechanical stresses in FRP laminates. Case studies: Implementation of CLT for evaluating residual stresses in the components made with different isotropic layers such as electronic packages etc.									
UNIT III LAMINA CONSTITUTIVE EQUATIONS9Lamina Constitutive Equations: Lamina Assumptions–Macroscopic Viewpoint. GeneralizedHooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, OrthotropicStiffness matrix (Qij), Definition of stress and Moment Resultants. Strain Displacement relations.Basic Assumptions of Laminated anisotropic plates. Laminate Constitutive Equations – CouplingInteractions, Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, CrossPly Laminates.Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-IsotropicLaminates. Determination of Lamina stresses within Laminates.UNIT IV LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLATPLATES9Introduction- Maximum Stress and Strain Criteria. Von-Misses Yield criterion for IsotropicMaterials, Generalized Hill's Criterion for Anisotropic materials, Tsai-Hill's Failure Criterion forComposites. Tensor Polynomial (Tsai-Wu) Failure criterion, Prediction of laminate FailureEquilibrium Equations of Motion. Energy Formulations, Static Bending Analysis. BucklingAnalysis. Free Vibrations– Natural FrequenciesUNIT V THERMO-STRUCURAL ANALYSIS9Fabrication stresses / Residual stresses in FRP laminated composites-Co-efficient of ThermalExpansion (C.T.E.) - Modification of Hooke's Law, Modification of Laminate ConstitutiveEquations. Orthotropic Lamina C.T.E's -Stress and Moment Resultants due cooling of the laminatesduring fabrication-Calculations for thermo-mechanical stresses in FRP laminates.Case studies: Implementation of CLT for evaluating residual stresses in the components made with<	·		s (C	MCs)-	-hot	press			
Lamina Constitutive Equations: Lamina Assumptions–Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Stiffness matrix (Qij), Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminated anisotropic plates. Laminate Constitutive Equations – Coupling Interactions, Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, CrossPly Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates. UNIT IV LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLAT PLATES 9 Introduction- Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials, Generalized Hill's Criterion for Anisotropic materials, Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion, Prediction of laminate Failure Equilibrium Equations of Motion. Energy Formulations, Static Bending Analysis. Buckling Analysis. Free Vibrations– Natural Frequencies UNIT V THERMO-STRUCURAL ANALYSIS 9 Fabrication stresses / Residual stresses in FRP laminated composites-Co-efficient of Thermal Expansion (C.T.E.) - Modification of Hooke's Law, Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's -Stress and Moment Resultants due cooling of the laminates during fabrication-Calculations for thermo-mechanical stresses in FRP laminates. Case studies: Implementation of CLT for evaluating residual stresses in the components made with different isotropic layers such as electronic packages etc.					0				
Hooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Stiffness matrix (Qij), Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminated anisotropic plates. Laminate Constitutive Equations – Coupling Interactions, Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, CrossPly Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates. UNIT IV LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLAT PLATES 9 Introduction- Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials, Generalized Hill's Criterion for Anisotropic materials, Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion, Prediction of laminate Failure Equilibrium Equations of Motion. Energy Formulations, Static Bending Analysis. Buckling Analysis. Free Vibrations– Natural Frequencies UNIT V THERMO-STRUCURAL ANALYSIS 9 Fabrication stresses / Residual stresses in FRP laminated composites-Co-efficient of Thermal Expansion (C.T.E.) - Modification of Hooke's Law, Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's -Stress and Moment Resultants due cooling of the laminates during fabrication-Calculations for thermo-mechanical stresses in FRP laminates. Case studies: Implementation of CLT for evaluating residual stresses in the components made with different isotropic layers such as electronic packages etc.		-	unoi		-	lized			
Stiffness matrix (Qij), Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminated anisotropic plates. Laminate Constitutive Equations – Coupling Interactions, Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, CrossPly Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates. UNIT IV LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLAT PLATES 9 Introduction- Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials, Generalized Hill's Criterion for Anisotropic materials, Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion, Prediction of laminate Failure Equilibrium Equations of Motion. Energy Formulations, Static Bending Analysis. Buckling Analysis. Free Vibrations– Natural Frequencies UNIT V THERMO-STRUCURAL ANALYSIS 9 Fabrication stresses / Residual stresses in FRP laminated composites-Co-efficient of Thermal Expansion (C.T.E.) - Modification of Hooke's Law, Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's -Stress and Moment Resultants due cooling of the laminates during fabrication-Calculations for thermo-mechanical stresses in FRP laminates. Case studies: Implementation of CLT for evaluating residual stresses in the components made with different isotropic layers such as electronic packages etc.									
Basic Assumptions of Laminated anisotropic plates. Laminate Constitutive Equations – Coupling Interactions, Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, CrossPly Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates. UNIT IV LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLAT PLATES 9 Introduction- Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials, Generalized Hill's Criterion for Anisotropic materials, Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion, Prediction of laminate Failure Equilibrium Equations of Motion. Energy Formulations, Static Bending Analysis. Buckling Analysis. Free Vibrations– Natural Frequencies UNIT V THERMO-STRUCURAL ANALYSIS 9 Fabrication stresses / Residual stresses in FRP laminated composites-Co-efficient of Thermal Expansion (C.T.E.) - Modification of Hooke's Law, Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's -Stress and Moment Resultants due cooling of the laminates during fabrication-Calculations for thermo-mechanical stresses in FRP laminates. Case studies: Implementation of CLT for evaluating residual stresses in the components made with different isotropic layers such as electronic packages etc.									
Interactions, Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, CrossPly Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates. UNIT IV LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLAT PLATES 9 Introduction- Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials, Generalized Hill's Criterion for Anisotropic materials, Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion, Prediction of laminate Failure Equilibrium Equations of Motion. Energy Formulations, Static Bending Analysis. Buckling Analysis. Free Vibrations– Natural Frequencies UNIT V THERMO-STRUCURAL ANALYSIS 9 Fabrication stresses / Residual stresses in FRP laminated composites-Co-efficient of Thermal Expansion (C.T.E.) - Modification of Hooke's Law, Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's -Stress and Moment Resultants due cooling of the laminates during fabrication-Calculations for thermo-mechanical stresses in FRP laminates. Case studies: Implementation of CLT for evaluating residual stresses in the components made with different isotropic layers such as electronic packages etc.									
Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates. UNIT IV LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLAT PLATES 9 Introduction- Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials, Generalized Hill's Criterion for Anisotropic materials, Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion, Prediction of laminate Failure Equilibrium Equations of Motion. Energy Formulations, Static Bending Analysis. Buckling Analysis. Free Vibrations– Natural Frequencies UNIT V THERMO-STRUCURAL ANALYSIS 9 Fabrication stresses / Residual stresses in FRP laminated composites-Co-efficient of Thermal Expansion (C.T.E.) - Modification of Hooke's Law, Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's -Stress and Moment Resultants due cooling of the laminates during fabrication-Calculations for thermo-mechanical stresses in FRP laminates. Case studies: Implementation of CLT for evaluating residual stresses in the components made with different isotropic layers such as electronic packages etc.									
Laminates. Determination of Lamina stresses within Laminates. UNIT IV LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLAT PLATES 9 Introduction- Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials, Generalized Hill's Criterion for Anisotropic materials, Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion, Prediction of laminate Failure Equilibrium Equations of Motion. Energy Formulations, Static Bending Analysis. Buckling Analysis. Free Vibrations– Natural Frequencies UNIT V THERMO-STRUCURAL ANALYSIS 9 Fabrication stresses / Residual stresses in FRP laminated composites-Co-efficient of Thermal Expansion (C.T.E.) - Modification of Hooke's Law, Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's -Stress and Moment Resultants due cooling of the laminates during fabrication-Calculations for thermo-mechanical stresses in FRP laminates. Case studies: Implementation of CLT for evaluating residual stresses in the components made with different isotropic layers such as electronic packages etc.									
UNIT IV LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLAT PLATES 9 Introduction- Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials, Generalized Hill's Criterion for Anisotropic materials, Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion, Prediction of laminate Failure Equilibrium Equations of Motion. Energy Formulations, Static Bending Analysis. Buckling Analysis. Free Vibrations– Natural Frequencies UNIT V THERMO-STRUCURAL ANALYSIS 9 Fabrication stresses / Residual stresses in FRP laminated composites-Co-efficient of Thermal Expansion (C.T.E.) - Modification of Hooke's Law, Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's -Stress and Moment Resultants due cooling of the laminates during fabrication-Calculations for thermo-mechanical stresses in FRP laminates. Case studies: Implementation of CLT for evaluating residual stresses in the components made with different isotropic layers such as electronic packages etc.		*	0000	. Quus	150	liopie			
PLATES9Introduction- Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials, Generalized Hill's Criterion for Anisotropic materials, Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion, Prediction of laminate Failure Equilibrium Equations of Motion. Energy Formulations, Static Bending Analysis. Buckling Analysis. Free Vibrations– Natural FrequenciesUNIT V THERMO-STRUCURAL ANALYSIS9Fabrication stresses / Residual stresses in FRP laminated composites-Co-efficient of Thermal Expansion (C.T.E.) - Modification of Hooke's Law, Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's -Stress and Moment Resultants due cooling of the laminates during fabrication-Calculations for thermo-mechanical stresses in FRP laminates.Case studies: Implementation of CLT for evaluating residual stresses in the components made with different isotropic layers such as electronic packages etc.			MI	NATE	DF	LAT			
Introduction- Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials, Generalized Hill's Criterion for Anisotropic materials, Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion, Prediction of laminate Failure Equilibrium Equations of Motion. Energy Formulations, Static Bending Analysis. Buckling Analysis. Free Vibrations– Natural Frequencies UNIT V THERMO-STRUCURAL ANALYSIS 9 Fabrication stresses / Residual stresses in FRP laminated composites-Co-efficient of Thermal Expansion (C.T.E.) - Modification of Hooke's Law, Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's -Stress and Moment Resultants due cooling of the laminates during fabrication-Calculations for thermo-mechanical stresses in FRP laminates. Case studies: Implementation of CLT for evaluating residual stresses in the components made with different isotropic layers such as electronic packages etc.									
Materials, Generalized Hill's Criterion for Anisotropic materials, Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion, Prediction of laminate Failure Equilibrium Equations of Motion. Energy Formulations, Static Bending Analysis. Buckling Analysis. Free Vibrations– Natural Frequencies UNIT V THERMO-STRUCURAL ANALYSIS 9 Fabrication stresses / Residual stresses in FRP laminated composites-Co-efficient of Thermal Expansion (C.T.E.) - Modification of Hooke's Law, Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's -Stress and Moment Resultants due cooling of the laminates during fabrication-Calculations for thermo-mechanical stresses in FRP laminates. Case studies: Implementation of CLT for evaluating residual stresses in the components made with different isotropic layers such as electronic packages etc.		Maximum Stress and Strain Criteria. Von-Misses Yield cri	terio	on for	Isot	tropic			
Composites. Tensor Polynomial (Tsai-Wu) Failure criterion, Prediction of laminate Failure Equilibrium Equations of Motion. Energy Formulations, Static Bending Analysis. Buckling Analysis. Free Vibrations– Natural Frequencies UNIT V THERMO-STRUCURAL ANALYSIS 9 Fabrication stresses / Residual stresses in FRP laminated composites-Co-efficient of Thermal Expansion (C.T.E.) - Modification of Hooke's Law, Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's -Stress and Moment Resultants due cooling of the laminates during fabrication-Calculations for thermo-mechanical stresses in FRP laminates. Case studies: Implementation of CLT for evaluating residual stresses in the components made with different isotropic layers such as electronic packages etc.									
Equilibrium Equations of Motion. Energy Formulations, Static Bending Analysis. Buckling Analysis. Free Vibrations– Natural FrequenciesUNIT V THERMO-STRUCURAL ANALYSIS9Fabrication stresses / Residual stresses in FRP laminated composites-Co-efficient of Thermal Expansion (C.T.E.) - Modification of Hooke's Law, Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's -Stress and Moment Resultants due cooling of the laminates during fabrication-Calculations for thermo-mechanical stresses in FRP laminates.Case studies:Implementation of CLT for evaluating residual stresses in the components made with different isotropic layers such as electronic packages etc.									
Analysis. Free Vibrations– Natural FrequenciesUNIT V THERMO-STRUCURAL ANALYSIS9Fabrication stresses / Residual stresses in FRP laminated composites-Co-efficient of Thermal Expansion (C.T.E.) - Modification of Hooke's Law, Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's -Stress and Moment Resultants due cooling of the laminates during fabrication-Calculations for thermo-mechanical stresses in FRP laminates.Case studies:Implementation of CLT for evaluating residual stresses in the components made with different isotropic layers such as electronic packages etc.	Equilibrium E	quations of Motion. Energy Formulations, Static Bending	Ana	alysis.	Buc	kling			
 Fabrication stresses / Residual stresses in FRP laminated composites-Co-efficient of Thermal Expansion (C.T.E.) - Modification of Hooke's Law, Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's -Stress and Moment Resultants due cooling of the laminates during fabrication-Calculations for thermo-mechanical stresses in FRP laminates. Case studies: Implementation of CLT for evaluating residual stresses in the components made with different isotropic layers such as electronic packages etc. 	Analysis. Free	Vibrations- Natural Frequencies		-		÷			
Expansion (C.T.E.) - Modification of Hooke's Law, Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's -Stress and Moment Resultants due cooling of the laminates during fabrication-Calculations for thermo-mechanical stresses in FRP laminates. Case studies: Implementation of CLT for evaluating residual stresses in the components made with different isotropic layers such as electronic packages etc.	UNIT V THE	RMO-STRUCURAL ANALYSIS			9				
Equations. Orthotropic Lamina C.T.E's -Stress and Moment Resultants due cooling of the laminates during fabrication-Calculations for thermo-mechanical stresses in FRP laminates. Case studies: Implementation of CLT for evaluating residual stresses in the components made with different isotropic layers such as electronic packages etc.	Fabrication str	esses / Residual stresses in FRP laminated composites-Co-e	effic	ient of	Th	ermal			
during fabrication-Calculations for thermo-mechanical stresses in FRP laminates. Case studies: Implementation of CLT for evaluating residual stresses in the components made with different isotropic layers such as electronic packages etc.	Expansion (C.T.E.) - Modification of Hooke's Law, Modification of Laminate Constitutive								
Case studies: Implementation of CLT for evaluating residual stresses in the components made with different isotropic layers such as electronic packages etc.									
different isotropic layers such as electronic packages etc.									
TOTAL : 45 HOURS	different isotro	pic layers such as electronic packages etc.							
		ТО	TA	L:45	HO	URS			

The student will be able to

- Calculate for mechanical strength of the composite material
- Fabricate the FRP and other composites by different manufacturing methods
- Analyze fiber reinforced Laminates for different combinations of plies with different orientations of the fiber.
- Evaluate the stresses in the lamina of the laminate using different failure theories
- Analyze thermo-mechanical behavior and evaluate residual stresses in different types of laminates using the Classical Laminate Theory.

TEXT BOOKS:

- 1. Gibson RF, "Principles of Composite Material Mechanics", CRC press, 4th Edition, 2015.
- 2. Agarwal BD and Broutman LJ, "Analysis and Performance of Fiber Composites", John Wiley and Sons, New York, 1990.

- 1. Hyer MW and Scott R White, "Stress Analysis of Fiber Reinforced Composite Materials", DEStech Publication Incorporated, 2009.
- 2. Issac M Daniel and OriIshai, "Engineering Mechanics of Composite Materials", Oxford University Press, First Indian Edition, 2007.
- 3. Madhujit Mukhopadhyay, "Mechanics of Composite Materials and Structures", University Press (India) Pvt. Ltd., Hyderabad, Reprinted, 2008.
- 4. Mallick PK, "Fiber Reinforced Composites: Materials, Manufacturing and Design", CRC Press, 3rd Edition, 2007.

222EDE05	ADVANCED MECHANICS OF MATERIALS	L 3	Т	P	С
			0	0	3
 To sturnsym To lea To sturnsym To sturnsym<!--</td--><td>rn the concepts of theory of elasticity in three-dimensional structure dy the shear centre of various cross-sections and deflections metrical bending. rn the stresses in flat plates and curved members. dy torsional stress of non-circular sections. arn the stresses in rotating members, contact stresses in pations. ITE: Knowledge of Strength of Materials is required. STICITY</td><th>in b point</th><th>and</th><th>subje line 9</th><td>contact</td>	rn the concepts of theory of elasticity in three-dimensional structure dy the shear centre of various cross-sections and deflections metrical bending. rn the stresses in flat plates and curved members. dy torsional stress of non-circular sections. arn the stresses in rotating members, contact stresses in pations. ITE: Knowledge of Strength of Materials is required. STICITY	in b point	and	subje line 9	contact
Stress-Strain relations and general equations of elasticity in Cartesian, Polar and curvilinear coordinates, differential equations of equilibrium – compatibility - boundary conditions - representation of three - dimensional stress of a tension generalized Hook's law - St. Venant's principle - plane stress - Airy's stress function. Energy methods.					
Location of sh	AR CENTRE AND UNSYMMETRICAL BENDING ear centre for various thin sections - shear flows. Stresses and	d De	flectio	9 ns in	beams
subjected to unsymmetrical loading-kern of a section. UNIT III STRESSES IN FLAT PLATES AND CURVED MEMBERS 9 Circumference and radial stresses – deflections - curved beam with restrained ends - closed ring subjected to concentrated load and uniform load - chain links and crane hooks. Solution of rectangular plates – pure bending of plates – deflection – uniformly distributed load – various end conditions					
UNIT IV TO Torsion of rect function - tors UNIT V STR Radial and tar	RSION OF NON-CIRCULAR SECTIONS angular cross section - St. Venants theory - elastic membrane an onal stress in hollow thin walled tubes. ESSES IN ROTATING MEMBERS AND CONTACT STI agential stresses in solid disc and ring of uniform thickness ds, Methods of computing contact stress-deflection of bodies in	RES: and	SES varyin	9 Ig th	ickness
applications.		то	TAL	: 45	Hours

The students will be able to

- Apply the concepts of theory of elasticity in three-dimensional stress system.
- Determine the shear centre of various cross-sections and deflections in beams subjected to unsymmetrical bending.
- Evaluate the stresses in flat plates and curved members.
- Calculate torsional stress of non-circular sections.
- Determine the stresses in rotating members, contact stresses in point and line contact applications.

TEXT BOOKS:

- 1. Arthur P Boresi, Richard J.Schmidt, "Advanced Mechanics of Materials", Wiley India Pvt. Ltd., 2009.
- 2. Timoshenko and Goodier, "Theory of Elasticity", Tata McGraw Hill, 2010.

- 1. Hibbeler. R.C., "Mechanics of Materials", Prentice-Hall, 2018.
- 2. Srinath. L.S., "Advanced Mechanics of Solids", Tata McGraw Hill, 2009.
- 3. Robert D.Cook, Warren C.Young, "Advanced Mechanics of Materials", Prentice Hall, 1999.

		1					
222EDE06	DESIGN OF AUTOMOTIVE SYSTEM	L	Т	P	С		
		3	0	0	3		
OBJECTIVE							
	dy about the design and loading conditions on automobile		-	its.			
e	n knowledge about the design of clutch with different para						
3. To ena	ble the student to comprehend the purpose and usage of tr	ansi	missio	n sy	stem		
in auto	mobiles.						
4. To des	ign the suspension and steering system.						
5. To stud	dy the design principles of brakes at various pressure & to	que	s.				
PREREQUISI	TE: Knowledge of Design of Transmission system is required.						
	RODUCTION			9			
	ut of Automobile, Types of Chassis, Material, Performance						
U	tions, Loading Conditions, Forced Vibrations of Spring N	Aass	s with	Rar	ldom		
,	Fatigue Resistance Analysis Procedure.						
UNIT II CLU				9	_		
U	tches, Calculation of Critical Parameters of Clutches, Des	<u> </u>					
	nents of Friction Clutches, Torsional Vibration Damper	rs, (Clutch	Co	ntrol		
Drives.				0			
	ANSMISSION			9	7		
	Systems, Parameters, Differential, Axle Shafts, Gear Be						
•	r Box, Gear Shift Mechanisms, Planetary Gears. Kinem	atic	SOIU	Jniv	ersal		
-	of Universal Joint and Propeller Shaft.			9			
	SPENSION AND STEERING SYSTEM	lact		-	to of		
	d Smoothness of Ride, Elastic Characteristics of Ride, E						
-	hock Absorbers. Fundamentals of Designing and Calculatin ring Gears, Hydraulic Booster.	ig S	leenn	g CO	iiii0i		
UNIT V BRA				9			
	ibution in Brakes, Braking Torque, Internally Expanding	Bra		-	on of		
	k Brakes, Fundamentals of Designing Brake Force Regu			-	-		
System.	k Drakes, I undamentals of Designing Drake Force Regu	iaio	15, 111	unoc	KIIIg		
TOTAL : 45 HOURS							
COURSE OUT							
The student w	ill have an ability to						
Design	the various automobile components.						
• Design of clutch with different parameters.							
• Design the various transmission components							
•	the suspension and steering system.						
-	the brakes at various pressure & torques.						
• Design the brakes at various pressure & torques.							

- 1. Heinz Heisier, "Vehicle and Engine technology", SAE, New York, Second Edition, 1999.
- 2. Lukin P Gasparyants G and Rodionov V, "Automobile Chassis Design and Calculations", Second Edition, Mir Publishers, 1989.

- 1. Jack Erjavec, "Automotive Technology A System Approach", Thomson Delmar Learning, 6th Edition, 2014.
- 2. Horst Bauer, "Diesel-Engine Management Systems and Components", Robert Bosch, 4th Edition, 2006.
- 3. John Fenton, "Handbook of automotive body and systems design", Professional Engineering Publishing, 2001.
- 4. Schwaller AE, "Motor Automotive Technology", 3rd Editions, Delman Publishers, New York, 1999.
- 5. Gillespie T D, "Fundamentals of Vehicle Dynamics", SAE Inc., New York, 2nd Edition, 2021.

L	Т	Р	С
3	0	0	3

9

9

9

OBJECTIVES:

- 1. To explain the role of supply chain management in an organization.
- 2. To identify the various aspects of supply chain management and the factors affecting them.
- 3. To explain the relationship among various factors involved in planning, organising and controlling supply chain operations.
- 4. To summarize the sourcing and inventory decisions involved in supply chain operations.
- 5. To explain the use of information technology in supply chain management.

UNIT I INTRODUCTION SUPPLY CHAIN MANAGEMENT

Introduction, Types of supply chains with and examples, Evolution of SCM concepts, Supply chain performance, Strategic Fit, Drivers of Supply Chain Performance - key decision areas -External Drivers of Change. Supply contracts – centralized vs. decentralized system

UNIT II SUPPLY CHAIN NETWORK DESIGN

Need for distribution network design- Factors affecting, Design options for distribution network. Network design decisions - Framework, factors influencing, Models of facility location and capacity allocation. Role of Transportation in supply chain, modes of transportation Modal Selection, Classification of carriers, Carrier Selection, Transportation Execution and Control. Food Mile Concept., design options. 0

UNIT III DEMAND AND SUPPLY IN SUPPLY CHAIN

Forecasting in supply chain- Methods, Approach, Errors. Aggregate planning in supply chain-Problem, Strategies and Implementation. Predictable variability in supply chain, Managing supply and demand. Distribution strategies-direct shipment, traditional warehousing, cross docking, inventory pooling, transhipment, Choosing appropriate strategy, Milk Run Model.

UNIT IV SOURCING AND INVENTORY DECISIONS IN SUPPLY CHAIN 9 Purchasing Vs Procurement Vs Strategic Sourcing, Item procurement importance matrix, Strategic Sourcing Methodology, Managing sourcing and procurement process, Supplier selection and evaluation, Bullwhip effect and its management, Economies of scale in supply chain- Cycle inventory, Estimation, Quantity discounts, Multiechelon cycle inventory. Uncertainty in supply chain- Safety inventory, Determination of appropriate level, Impact on uncertainity.

UNIT V SUPPLYCHAIN AND INFORMATION SYSTEMS

Information in supply chain, Role of Information technology, IT framework in supply chain, Supplier and Customer relationship management. Role of e-business in supply chain, esourcing and eprocurement. Technology drivers in supply chain - Risk management.

TOTAL : 45 HOURS

COURSE OUTCOMES:

The students will able to

- To introduce the concepts and elements of supply chain management.
- To understand supply chain network design aspects for various manufacturing and • service.
- sectors. ٠
- To understand the principle of demand and supply in supply chain.
- To gain knowledge on the sourcing and inventory decisions in supply chain.
- To understand the concepts of supply chain information systems.

TEXT BOOKS:

- 1. Sahay B.S. "Supply Chain Management: For Global Competitiveness", 2nd Edition, Macmillan, India Ltd, 2011.
- 2. Chopra S. and Meihdl P., "Supply Chain Management- Strategy, Planning and Operations", Pearson Education Asia, 2007.

- 1. Dougart L., Stock J. and Ellram L., "Logistic Management", Irwin McGraw Hill International Edition, 1998.
- 2. Kaminsky S., "Design and Managing the Supply chain", McGraw Hill International Edition, 2000.
- 3. Raghuram G, and N.Rangaraj, "Logistics and Supply Chain Management -cases and concepts", McMilan India Pvt Ltd, New Delhi, 2000.

222EDE08	INTEGRATED PRODUCT AND PROCESS	L	T	P	C
OBJECTIVE	DEVELOPMENT	3	0	0	3
	the generic development process and concept development.				
	about the product planning and its phases.				
-	about the product planning and its plases. about the product specifications.				
	the knowledge on concept selection for a product.				
	anowledge on product architecture to apply on real time situation				
J. To gam r	inowledge on product architecture to appry on real time situation	18.			
PREREOUIS	ITE: Knowledge of CAD/CAM/CIM is required.				
UNIT I INTR				9	
	of Successful Product Development, Who Designs and Develop	s Proo	lucts.	Dura	ation
	roduct Development, Challenges of Product Development, Dev				
	ions, A Generic Development Process, Concept Developme				
Process, Adapt	ing the Genetic Product Development Process- Product Development	ment	Proce	ss Fle	ows-
The AMF Dev	elopment Process-Product Development Organizations.				
	DUCT PLANNING			9	
	ing Process- Identifying Opportunities- Evaluating and Process-				
	sources and Timing- Pre-Project Planning-Reflect on the Resu				
	stomer Needs- Raw Data from Customers- Interpreting Raw				
	ds-Organizing the Needs into a Hierarchy-Establishing the Rel	ative	Impo	ortanc	e of
	ecting on the Results and the Process			0	
	DUCT SPECIFICATIONS			9	
	rifications -When Are Specifications Established-Establishing Ta				
U U	al Specifications-Concept Generation-The Activity of Concept				•
and the Proces	Search Externally-Search Internally-Explore Systematically- Re	meet	on ui	еке	suits
	S. NCEPT SELECTION			9	
	tion- Overview of Methodology-Concept Screening-Concept	Test	ino-D	-	the
	Concept Test- Choose a Survey Population- Choose a Survey Fo				
	Measure Customer Response-Interpret the Results- Reflect on				
Process	1 1				
UNIT V PRO	DUCT ARCHITECTURE			9	
Product Arch	tecture-Implications of the Architecture-Establishing the A	rchite	ecture	-Del	ayed
Differentiation	-Platform Planning-Related System, Level Design Issues				
	ТО	TAL	: 45 1	HOU	RS
COURSE OU	TCOMES:				
• The studen	ts will have the knowledge about the product development proce	ess an	d cha	lleng	es in
product de	velopment.			-	
• The studer	t will be able to implement the projects and execute them.				
• The studen	ts will have an ability to gain knowledge on writing about the pro-	oduct	speci	ficati	ions.
• The studer	ts will be able to know about concept selection process and concept	cept t	esting	.	
	ts will have an ability to gain knowledge on product level design	-	-		
TEXT BOOK					
	ich and Steven D.Eppinger, "Product Design and Developme	ent".	McGr	aw -	-Hill
	al Edns., Fifth Edition, 2017.	, -			
	o, Kristin Wood, "Product Design: Techniques in Reverse En	ginee	ring	and	New
	evelopment", 1 st Edition, Pearson, 2 nd Indian Reprint 2004.	0	0		

- 1. Stephen Rosenthal, "Effective Product Design and Development", Business One Orwin, Homewood, 1992, ISBN, 1-55623-603-4
- 2. Stuart Pugh, "Tool Design Integrated Methods for successful Product Engineering", Addison Wesley Publishing, NY, 1991, ISBN 0-202-41639-5
- 3. Kemnneth Crow, "Concurrent Engg. /Integrated Product Development", DRM Associates, 26/3, Via Olivera, Palos Verdes, CA 90274(310) 377-569, Workshop Book.

		Т	L T		С
222EDE09	INTEGRATED MANUFACTURING SYSTEMS	3	0	P 0	3
 To gain 1 manufact To gain t To gain t 	S: rstand the important features of production systems. knowledge on group technology, computer aided process plan uring systems in modern manufacturing. he knowledge on Computer Aided Planning and Control. he knowledge of computer monitoring systems in production. the concepts of integrated manufacturing system.	ning	and i	ntegr	ated
PREREQUIS	ITE: Knowledge of CAD/CAM/CIM is required.				
	a manufacturing system-identifying business opportuniti of production systems-linking manufacturing strategy and s				
Introduction-pa	JP TECHNOLOGY AND COMPUTER AIDED PROCESS PLAN art families-parts classification and coding - group technology ma ology. Process planning function CAPP – Computer generated ti	achir	ne cell		efits
Production pla requirements	MPUTER AIDED PLANNING AND CONTROL anning and control-cost planning and control-inventory mar planning (MRP)-shop floor control-Factory data collection ystem-barcode technology- automated data collection system.				
UNIT IV COM Types of produ & strategies-	MPUTER MONITORING action monitoring systems-structure model of manufacturing proc direct digital control-supervisory computer control compute hods non-contact inspection method – computer aided testing - in	r in	QC	- coi	ntact
Definition - ap handling syste Manufacturing mission manuf	CGRATED MANUFACTURING SYSTEM pplication - features - types of manufacturing systems- mach em- computer control system - DNC systems manufactu Systems (FMS) - the FMS concept transfer systems - head chan facturing system - CAD/CAM system - human labor in the ma grated manufacturing system benefits. Rapid prototyping - Artific in CIM.	ring ging nufa	cell. FMS cturing	Flez - vari g sys	xible iable tem-
	ΤΟ΄	TAL	.: 45]	HOU	RS
• Get good					tion

- metrics with computer monitoring and control of manufacturing.
- Understand the production monitoring system.
- Understand the applications of FMS and Rapid prototyping concepts.

TEXT BOOKS:

- 1. Mikell P Groover, "Automation, Production System and Computer Integrated Manufacturing", Pearson/Prentice-Hall of India, 2012.
- 2. James A Rehg and Henry W Kroebber, "Computer Integrated Manufacturing", Pearson/Prentice-Hall of India, 2005.

- 1. Yorem Koren, "Computer Integrated Manufacturing Systems", McGraw Hill, 2010.
- 2. David Bedworth, "Computer Integrated Design and Manufacturing", TMH, New Delhi, 1998.
- 3. Ranky, Paul G., "Computer Integrated Manufacturing", Prentice Hall International, 1st Edition, 1986.
- 4. R.W. Yeomans, A. Choudry and P.J.W. Ten Hagen, "Design rules for a CIM system", North Holland Amsterdam, 1986.

Р Т С L 222EDE10 DESIGN FOR MANUFACTURE AND ASSEMBLY 3 0 0 3 **OBJECTIVES:** 1. To aquire knowledge on process capability and tolerances, form design. 2. To know about the factors influencing form design. 3. To gain the knowledge on component design for machining consideration, casting consideration in component design and design for the environment. 4. To gain the knowledge on group technology concepts. 5. To know about the environmental objectives and global issues. **PREREQUISITE:** Knowledge of Machine drawing is required. 8 UNIT I PROCESS CAPABILITY AND TOLERANCES General design principles for manufacturability - strength and mechanical factors, mechanisms selection, Evaluation method, Process capability - Feature tolerances, Geometric tolerances. Worst case method - Assembly limits, Datum features, Tolerance stacks. UNIT II FACTORS INFLUENCING FORM DESIGN Q Influence of materials on form design - form design of grey iron, malleable iron, steel and aluminium castings - form design of welded members, forgings. **UNIT III COMPONENT DESIGN - MACHINING CONSIDERATION** 10 Design features to facilitate machining - drills, milling cutters, keyways, Doweling procedures, Counter sunk screws - Reduction of machined area, simplification by separation, simplification by amalgamation. Design for machinability - Design for economy, Design for clampability, Design for accessibility, Design for assembly. UNIT IV COMPONENT DESIGN - CASTING CONSIDERATION Redesign of castings based on Parting line considerations - Minimizing core requirements, machined holes, redesign of cast members to obviate cores. Identification of uneconomical design - Modifying the design - Group technology, Computer Applications for DFMA. 9 **UNIT V DESIGN FOR THE ENVIRONMENT** Introduction – Environmental objectives, Global issues, Regional and local issues. Basic DFE methods – Design guide lines, Example application. Lifecycle assessment – Basic method, AT&T's environmentally responsible product assessment. Weighted sum assessment method – Lifecycle assessment method, Techniques to reduce environmental impact, Design to minimize material usage. Design for disassembly, Design for recyclability, Design for remanufacture, Design for energy efficiency, Design to regulations and standards. **TOTAL : 45 HOURS COURSE OUTCOMES:** The students will be able to Understand the complex interrelationships between design and manufacturing. Explore and understand basic manufacturing processes and the design for manufacturing (DFM) implications of design choices for specific manufacturing processes.

- Understand the role of components design with machining consideration.
- Understand approaches and practices related to CAD model building and model • checking for specific manufacturing processes such as models for sheet metal and models for casts and molds.
- Know about the environmental issues with case study.

•

TEXT BOOKS:

- 1. Peck, Harry, "Designing for Manufacture", Pitman Publications, 2010.
- 2. James Bralla, "Design for Manufacturability Handbook", Second Edition, McGraw-Hill, New York, 1999.

- 1. George E Dieter, "Engineering Design- Material and processing approach", McGraw Hill Intl., 2nd Edition, 2013.
- 2. Matousek, "Engineering Design- A Systematic Approach", Blackie & Son Ltd, London, 2013.
- 3. Kevien Otto and Kristin Wood, "Product Design", Pearson Publication, New Delhi, 2011.
- 4. Boothroyd, G, Heartz and Nike, "Product Design for Manufacture", Second Edition, Marcel Dekker Inc., London, 2010.

222EDE11	ENGINEERING FRACTURE MECHANICS	L	Т	P	С
	ENGINEERING FRACTURE MECHANICS	3	0	0	3
 To get To anal To und To anal To anal 	erstand the basic concepts of solid mechanics. knowledge on stationary crack, crack growth and fatigue c lyze dynamic energy balance. erstand the concepts of fatigue crack growth curve. lyze crack Growth for cyclic loading and crack initiation u ITE: Knowledge of Engineering Materials and Metallurgy	nde	r large	e sca ed.	le.
	MENTS OF SOLID MECHANICS of stress and strain, elastic deformation, plastic and elasto- s.	plas	tic def	9 form	ation
Two dimensio	TIONARY CRACK UNDER STATIC LOADING nal elastic fields - Analytical solutions yielding near a cr - Plastic zone size - Dugdale model - J integral and it cement.		front		
Griffith analys	ERGY BALANCE AND CRACK GROWTH sis - Linear Fracture Mechanics-Crack opening displac e – R Curves - Crack arrest.	eme	ent -	9 Dyn	amic
Empirical relation	FIGUE CRACK GROWTH CURVE tion describing crack growth by fatigue - Life calculation fects of changing the load spectrum - Effects of Environm			9 iven	load
Crack Initiation	LICATION OF FRACTURE MECHANICS n under large scale yielding – Thickness as a design param ck instability in thermal and residual stress fields - Numer	ical	– Miz metho	ods	
 It helps the crack und It helps the crack and Design m 	TCOMES:	ack oner	nts tha	t coi	ntain
Academia 2. George E 3. Preshant REFERENCE 1. Anderson Edition, 2	roek, "Elementary Engineering Fracture Mechanics ", 4 c Publishers, 2005. C.Dieter,"Mechanical Metallurgy", 3 rd Edition, Tata McGra Kumar, "Elements of Fracture Mechanics", Tata McGraw E BOOKS: . T L, "Fracture Mechanics: Fundamentals and Application	tw H <u>Hil</u> ns",	Hill, 19 1 <u>, 2009</u> CRC	986. 9. Pres	s, 4 th

- 3. Sanfard R J, "Principles of Fracture Mechanics", Pearson Education Inc., Upper Saddle River, 2003.
- 4. Kare Hellan, "Introduction of Fracture Mechanics", McGraw-Hill Book Company, 2000.

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

L	Т	Р	С
3	0	0	3

9

9

9

OBJECTIVES:

- 1. To gain knowledge on artificial intelligence.
- 2. To understand the concepts of Machine Learning.
- 3. To appreciate supervised learning and their applications.
- 4. To appreciate the concepts and algorithms of unsupervised learning.
- 5. To understand the theoretical and practical aspects of Probabilistic Graphical Models.

UNIT I ARTIFICIAL INTELLIGENCE

Artificial intelligence - Basics - Goals of artificial intelligence - Altechniques-problem representation in AI – Problem reduction and solution techniques - Application of AI and KBES in Robots. 9

UNIT II INTRODUCTION TO MACHINE LEARNING

Machine Learning-Types of Machine Learning -Machine Learning process- preliminaries, testing Machine Learning algorithms, turning data into Probabilities, and Statistics for Machine Learning-Probability theory - Probability Distributions - Decision Theory. 9

UNIT III SUPERVISED LEARNING

Linear Models for Regression - Linear Models for Classification- Discriminant Functions, Probabilistic Generative Models, Probabilistic Discriminative Models - Decision Tree Learning - Bayesian Learning, Naive Bayes - Ensemble Methods, Bagging, Boosting, Neural Networks, Multi-layer Perceptron, Feedforward Network, Error Back propagation - Support Vector Machines.

UNIT IV UNSUPERVISEDLEARNING

Clustering- K-means - EM Algorithm- Mixtures of Gaussians -Dimensionality Reduction, Linear Discriminant Analysis, Factor Analysis, Principal Components Analysis, Independent Components Analysis.

UNIT V PROBABILISTIC GRAPHICAL MODELS

Graphical Models - Undirected Graphical Models - Markov Random Fields - Directed Graphical Models – Bayesian Networks – Conditional Independence properties – Markov Random Fields- Hidden Markov Models - Conditional Random Fields (CRFs).

TOTAL: 45 HOURS

COURSE OUTCOMES:

The students will able to

- Optimize the robots using Artificial Intelligence. •
- Design a learning model appropriate to the application.
- Implement Probabilistic Discriminative and Generative algorithms for an application of your choice and analyze the results.
- Use a tool to implement typical Clustering algorithms for different types of applications. •

Identify applications suitable for different types of Machine Learning with suitable justification.

TEXT BOOKS:

- 1. Stephen Marsland, "Machine Learning An Algorithmic Perspective", Chapman and Hall, CRCPress, Second Edition, 2014.
- Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Third Edition, 2014. 2.

- 1. Kevin P.Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012.
- Christopher Bishop, "Pattern Recognition and Machine Learning", Springer, 2007. 2.
- Tom Mitchell, "Machine Learning", McGraw-Hill, 1997. 3.

		L	Т	P	С
222EDE13	MECHATRONICS SYSTEM IN DESIGN	3	0	0	3
OBJECTIVI	ES:			1	
1. To un	derstand the functions of Mechatronics system.				
	ect appropriate sensors for an engineering application.				
	dy about application of microprocessors and microcontrol	lers j	progra	ums.	
	dy programmable logic controllers and their applications.				
	dy about different possible design solutions for a Mechatro	onic	systei	n.	
	SITE: Knowledge of Mechatronics is required.			0	
	RODUCTION		ь ·	9	
	to Mechatronics – Systems, Key Elements, Mechatron			-	
	Systems, Control Systems, Traditional design and Mecha	tron	ICS De	<u>9</u>	•
	NSORS AND TRANSDUCERS	aam	ont I	-	on and
	Transducers - Types, Performance Terminology, Displa elocity and Motion, Fluid pressure, Temperature sensors, L				
	gnal processing.	igitt	501150	15, 50	election
	CROPROCESSORS AND MICRO CONTROLLERS			9	
	ors and Micro Controllers – Architecture, Pin Configuration	on ar	nd Ine	-	ion Set
	of Microprocessors Using 8085 Instructions. Interfact				
	rfacing D/A converters and A/D converters, Applications,				
	control, Traffic light controller.		-r		
	OGRAMMABLE LOGIC CONTR-OLLERS			9	
Basic structur	e - Input / Output processing, Programming, Mnemonics, T	ime	rs, Int	ernal	Relays
and Counters.	Data handling - Analog input / output, Selection of PLC.				•
	IGN OF MECHATRONICS SYSTEMS			9	
	chatronics System – Future Trends, Possible Design Solu				
	Systems - Automatic Washing Machine, Auto Focusing	-	-		
Thermal Cycl	e Fatigue of Ceramic Plate with mechatronics approach, T				
COURSE OU		101	AL:	45 H	OURS
	will have the ability to				
	stand the functions of Mechatronics system.				
	appropriate sensors for an engineering application.				
	microcontroller programs.				
	Programmable Logic Controllers and their applications.				
	n solutions for a Mechatronic system.				
TEXT BOOK					
	el B.Histand and David G. Alciatore, "Introduction	to N	/lecha	troni	cs and
	rement Systems", McGraw-Hill International Editions, 5 th				
2. Bradle	ey, D.A., Dawson, D, Buru, N.C. and Loader, A J., "Mecha	tron	ics: E	lectro	onics in
Produ	cts and Processes ", Chapman and Hall, 2018.				
REFERENCE					
	sh.S, Gaonkar, "Microprocessor Architecture, Programm	ing	and A	Appli	cations
	ne 8085", 5 th Edition, Prentice Hall, 2002.			-	
	nce J.Kamm, "Understanding Electro-Mechanical Engine	ering	, An	Intro	duction
	chatronics ", IEEE Inc, New York, 1996.	Ъ.Т.			c c
	P.K. and Sridhar, P.R., 0000 to 8085, "Introduction to) M1	cropr	ocess	sors for
-	eers and Scientists ", Second Edition, Prentice Hall, 2009. . W, "Mechatronics Electronics Control Systems in Mec	hon:	oo1 or	4 E1	octrical
	eering", Pearson Education Press, 6 th Editions, 2018.	nafil	cai al		centeal
Engin	cring, realson Education (1688, 0) Educions, 2010.				

222EDE14	ADVANCED MACHINE TOOL DESIGN	L 3	T 0	P 0	C 3
OBJECTIVES	\ \:	3	U	U	3
	ng the different machine tool mechanisms.				
	the Multi speed Gear Box and feed drives.				
U	the machine tool structures.				
	the guideways and power screws.				
	the spindles and bearings.				
	ODUCTION TO MACHINE TOOL DESIGN				9
	Machine Tool Drives and Mechanisms, Auxiliary Motions	in N	Iachi	ne '	Fools.
	Machine Tools, Motion Transmission.				,
	ULATION OF SPEEDS AND FEEDS				9
	and Feed Regulation, Stepped Regulation of Speeds, Multiple S	Speed	d Mo	otors	
-	Design Considerations, Design of Speed Gear Boxes, Feed Drives, H	-			-
	IGN OF MACHINE TOOL STRUCTURES				9
Functions of M	achine Tool Structures and their Requirements, Design for Strength,	Desi	gn fo	r Rig	gidity,
	Aachine Tool Structures, Machine Tool Constructional Features, I		0		•
	ables, Saddles and Carriage.				0 /
	IGN OF GUIDEWAYS AND POWER SCREWS				9
Functions and	Гуреs of Guideways, Design of Guideways, Design of Aerostatic Sl	ide v	vays,	Des	ign of
Anti-Friction G	buideways, Combination Guideways, Design of Power Screws.				-
UNIT V DESI	GN OF SPINDLES AND SPINDLE SUPPORT				9
Functions of Sp	bindles and Requirements, Effect of Machine Tool Compliance on M	[achi	ning	Acc	uracy,
v	dles, Antifriction Bearings. Dynamics of Machine Tools: Machine T	lool	Elast	ic Sy	vstem,
Static and Dyna					
	TO	ГAL	: 45	HO	URS
COURSE OU					
The students v	vill able to				
• Select	the different machine tool mechanisms.				
 Design 	the Multi speed Gear Box and feed drives.				
 Design 	the machine tool structures.				
• Design	the guideways and power screws.				
-	the spindles and bearings.				
TEXT BOOK	1 6				
	n and A. Bhattacharya, "Principles of Machine Tools", New Central I	Book	Age	ncy,	2015.
	K. Basu, "Design of Machine Tools", 6th Edition. Oxford IBH, 20		U	J ,	
REFERENCE					
1. N.K. Me	ehta, "Machine Tool Design and Numerical Control", TMH, New De	lhi, 3	rd edi	ition	2012.
2. N. S. Ac	cherkhan, "Machine Tool Design", Volume 2 University Press of th	e Pac	ific,	2000).
3. F. Koen	igsberger, "Machine Tool Structures", Pergamon Press, 1970.				
4. F. Koen	igsberger, "Design Principles of Metal-Cutting Machine Tools", Per	gam	on Pi	ress,	1964.